Probing and Controlling Electronic Dynamics in Matter with Atomic Spatiotemporal Resolution

用原子时空分辨率探测和控制物质中的电子动力学

基本信息

  • 批准号:
    2110633
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Photoelectron emission is a fundamental light-matter interaction process in nature. It occurs upon the incidence of electromagnetic radiation with sufficiently short wavelength and adequate intensity on matter, proceeds through the coupling of the incident radiation with electrons, and results in the transfer of photonic energy to internal excitations of the target and the emission of electrons. The emitted photoelectrons carry information about the photoemission dynamics and electronic properties of the target material. For more than a century, the measurement and analysis of their energy and momentum distribution has been one of the most prolific methods for determining the electronic structure of matter, importantly promoting the development of laser and detection technologies as well as accurate quantum-mechanical theoretical methods. Energy-domain spectra image the sample's time-averaged internal electronic dynamics during the photoemission process, but do not resolve the ultrafast time-dependent electronic dynamics during the photoelectron-release (or –rescattering) process. The proposed theoretical work is motivated by extraordinary progress in ultrafast laser technology that enabled the generation of ultrashort light pulses and their accurate control and synchronization. These pulses allow for investigations of the electronic dynamics in isolated atoms and condensed matter systems with temporal resolution at the natural timescale of the electronic motion in matter and with atomic spatial resolution. In the same way as making a movie of a fast-moving object, such as a bullet in flight, requires the stroboscopic assembly of many frames, each constituting a momentary image of the object, time-domain spectroscopy is about to provide “electronic movies”, capable of displaying the motion of electrons in and their emission from matter with atomic spatiotemporal resolution. The proposed studies will advance our understanding of (i) single--electron and collective electronic excitations and (ii) the dynamics of electrons and fields in layered semiconductors, adsorbate-covered surfaces, and nanoparticles, promoting emerging technologies, such as light-wave computing, nano-catalysis, and artificial photosynthesis, thereby contributing to the development of novel computers and catalytic devices for securing our energy supply and preserving our environment.Attosecond time-resolved spectroscopy has led to impressive time-domain studies of ionization processes on isolated (gaseous) atoms and is anticipated to significantly advance our understanding of electronic properties of layered-semiconductor structures and nanoparticles. However, the physical interpretation of time-resolved photoemission spectra faces significant conceptual challenges and necessitates comprehensive theoretical investigations, even for simple atomic systems. For complex systems, such as nanoparticles and solid surfaces, additional severe technical difficulties in describing the transiently photoexcited electronic dynamics must be overcome. The proposed work addresses these challenges. It focuses on the modeling of time- and spatially resolved emission of electrons and the generation of up-converted high-harmonic (HH) radiation from adsorbate-covered metal surfaces and nanoparticles. It proceeds by developing and applying complementary quantum-mechanical methods, including numerical solutions of the time-dependent Schrödinger equation, and physically more transparent semi-classical methods. It will assess the fidelity with which time- and emission-angle-resolved photoelectron and HH spectra can reveal information on (a) electronic forces and dynamics in solids and (b) non-homogenous nano-plasmonic electric-field enhancements of incident light pulses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光电子发射是自然界中光与物质相互作用的基本过程。它发生在具有足够短波长和足够强度的电磁辐射入射到物质上时,通过入射辐射与电子的耦合进行,并导致光子能量转移到目标的内部激发和电子的发射。所发射的光电子携带关于靶材料的光发射动力学和电子性质的信息。世纪以来,对它们的能量和动量分布的测量和分析一直是确定物质电子结构的最丰富的方法之一,重要地促进了激光和探测技术以及精确的量子力学理论方法的发展。能域光谱成像了光发射过程中样品的时间平均内部电子动力学,但不能解决光电子释放(或重新散射)过程中的超快时间相关电子动力学。提出的理论工作的动机是超快激光技术的非凡进步,使超短光脉冲的产生及其精确的控制和同步。这些脉冲允许调查的电子动力学在孤立的原子和凝聚态系统的时间分辨率在自然时间尺度的电子运动的物质和原子的空间分辨率。就像拍摄一个快速移动的物体的电影一样,比如飞行中的子弹,需要许多帧的频闪组合,每个帧构成物体的瞬时图像,时域光谱学即将提供“电子电影”,能够以原子时空分辨率显示电子在物质中的运动和它们的发射。拟议的研究将促进我们对(i)单电子和集体电子激发的理解,以及(ii)层状半导体,吸附物覆盖的表面和纳米颗粒中电子和场的动力学,促进新兴技术,如光波计算,纳米催化和人工光合作用,从而有助于开发新型计算机和催化装置,以确保我们的能源供应和保护我们的环境。阿秒时间分辨光谱学已经导致了令人印象深刻的时间-领域的电离过程的研究孤立的(气态)原子,并预计将显着推进我们的层状半导体结构和纳米粒子的电子特性的理解。然而,时间分辨光电子能谱的物理解释面临着重大的概念挑战,需要全面的理论研究,即使是简单的原子系统。对于复杂的系统,如纳米粒子和固体表面,在描述瞬态光激发电子动力学的额外严重的技术困难,必须克服。拟议的工作应对这些挑战。它侧重于模拟时间和空间分辨的电子发射和产生的上转换高谐波(HH)辐射从吸附物覆盖的金属表面和纳米粒子。它通过开发和应用互补的量子力学方法来进行,包括含时薛定谔方程的数值解,以及物理上更透明的半经典方法。它将评估时间和发射角分辨光电子和HH光谱可以揭示(a)固体中的电子力和动力学信息以及(B)入射光脉冲的非均匀纳米等离子体电场增强的保真度。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced cutoff energies for direct and rescattered strong-field photoelectron emission of plasmonic nanoparticles
  • DOI:
    10.1515/nanoph-2023-0120
  • 发表时间:
    2023-04-12
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Saydanzad,Erfan;Powell,Jeffrey;Thumm,Uwe
  • 通讯作者:
    Thumm,Uwe
Strong-field ionization of plasmonic nanoparticles
  • DOI:
    10.1103/physreva.106.033103
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    E. Saydanzad;J. Li;U. Thumm
  • 通讯作者:
    E. Saydanzad;J. Li;U. Thumm
Breakdown of the single-collision condition for soft x-ray high harmonic generation in noble gases
  • DOI:
    10.1364/optica.471084
  • 发表时间:
    2022-12-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Chevreuil,Pierre-Alexis;Brunner,Fabian;Gallmann,Lukas
  • 通讯作者:
    Gallmann,Lukas
Strong-Field Control of Plasmonic Properties in Core–Shell Nanoparticles
核壳纳米粒子等离激元特性的强场控制
  • DOI:
    10.1021/acsphotonics.2c00663
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Powell, Jeffrey A.;Li, Jianxiong;Summers, Adam;Robatjazi, Seyyed Javad;Davino, Michael;Rupp, Philipp;Saydanzad, Erfan;Sorensen, Christopher M.;Rolles, Daniel;Kling, Matthias F.
  • 通讯作者:
    Kling, Matthias F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Uwe Thumm其他文献

“Step-up” versus “step-down” scattering asymmetry in the neutralization of H<sup>−</sup> on free-electron vicinal metal surfaces
  • DOI:
    10.1016/j.susc.2006.10.029
  • 发表时间:
    2007-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Boyan Obreshkov;Uwe Thumm
  • 通讯作者:
    Uwe Thumm

Uwe Thumm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Uwe Thumm', 18)}}的其他基金

Imaging Electronic Dynamics in Matter with Atomic Spatio-Temporal Resolution.
用原子时空分辨率对物质中的电子动力学进行成像。
  • 批准号:
    1802085
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Attosecond Time-Resolved Quantum Dynamics: From Atoms Towards Nanostructures
阿秒时间分辨量子动力学:从原子到纳米结构
  • 批准号:
    1464417
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Attosecond Time-Resolved Quantum Dynamics in Atoms and Surfaces
原子和表面的阿秒时间分辨量子动力学
  • 批准号:
    1068752
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Quantum Dynamics in Particle Interactions with Atomically Flat and Nano-Structured Surfaces
粒子与原子平面和纳米结构表面相互作用的量子动力学
  • 批准号:
    0653624
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Quantum Dynamics in Particle Interactions with Complex Surfaces
粒子与复杂表面相互作用的量子动力学
  • 批准号:
    0354840
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Quantum Dynamics in Particle--Solid Interactions
粒子-固体相互作用中的量子动力学
  • 批准号:
    0071035
  • 财政年份:
    2000
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Charge Exchange, Resonance Formation, and Electron Emission in Ion-Surface Interactions
离子表面相互作用中的电荷交换、共振形成和电子发射
  • 批准号:
    9604872
  • 财政年份:
    1997
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似海外基金

Controlling the Electronic Structure of Metallic Nanoparticles using Surface Chemistry
利用表面化学控制金属纳米颗粒的电子结构
  • 批准号:
    2304821
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Syntheses of Porous Molecular Conductors toward Creating and Controlling Novel Electronic States
多孔分子导体的合成以创造和控制新型电子态
  • 批准号:
    21H01901
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multi-parameter investigation of factors controlling carbonyl emissions from electronic cigarettes
电子烟羰基排放控制因素的多参数研究
  • 批准号:
    10219699
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
Multi-parameter investigation of factors controlling carbonyl emissions from electronic cigarettes
电子烟羰基排放控制因素的多参数研究
  • 批准号:
    10441326
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
Controlling photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光化学:走向原子化学
  • 批准号:
    2601202
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Multi-parameter investigation of factors controlling carbonyl emissions from electronic cigarettes
电子烟羰基排放控制因素的多参数研究
  • 批准号:
    10659026
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
Controlling photophysics and photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光物理和光化学:走向原子化学
  • 批准号:
    EP/T006560/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Controlling photophysics and photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光物理和光化学:走向原子化学
  • 批准号:
    EP/T006943/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Exploring and controlling electronic properties of 2D architecture formed by highly-correlated radicals
探索和控制由高度相关的自由基形成的二维结构的电子特性
  • 批准号:
    20H02707
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Active controlling of electronic state of supported catalysts for enhanced catalysis using thermally excited electron
利用热激发电子主动控制负载型催化剂的电子态以增强催化作用
  • 批准号:
    20K15084
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了