Numerical Methods for Deterministic and Stochastic Phase Field Models
确定性和随机相场模型的数值方法
基本信息
- 批准号:2110728
- 负责人:
- 金额:$ 10.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project will consider algorithms for moving interface problems that have broad applications in materials science, geometry, and broad physical sciences and engineering. The phase field model is one of the most important models to formulate the moving interface problems, and it arises from many interdisciplinary applications, such as the nucleation and growth processes of polycrystalline materials, chemical reaction, solidification dynamics, and so on. This project proposes several accurate and efficient algorithms to solve the phase field models and to further explore the connections between different areas. In addition, the project will address randomness, which plays an important role in the phase field model applications due to the existence of the impurities, and specifically will consider the design, analysis, and implementation of numerical methods for the stochastic phase field models which incorporate the randomness. Moreover, this project trains graduate students to equip them with necessary skills for their future careers.This research project develops a few accurate and efficient numerical algorithms for both deterministic and stochastic phase field models. The deterministic case discusses the sharpest error bounds for the general phase field models in various spaces and their approximations to geometric flows, the adaptive two-grid algorithms, and some optimization algorithms which are robust to topological changes for the fourth-order phase field models. A package of the phase field models and geometric flows will be developed to better study the theoretical results and to predict other new results. The stochastic case focuses on discrete stability and convergence results for the fourth-order stochastic phase field models, and sharpest discrete stability and convergence results for the second-order stochastic phase field models using stochastic parabolic duality, which may provide theoretical foundation for the approximations to stochastic geometric flows.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将考虑移动界面问题的算法,这些问题在材料科学、几何、广泛的物理科学和工程中有广泛的应用。相场模型是描述运动界面问题的重要模型之一,它在多晶材料的成核和生长过程、化学反应、凝固动力学等许多跨学科应用中出现。本项目提出了几种准确高效的算法来求解相场模型,进一步探索不同区域之间的联系。此外,由于杂质的存在,随机性在相场模型的应用中起着重要的作用,本项目将对随机性相场模型的设计、分析和数值方法的实现进行研究。此外,这个项目训练研究生为他们未来的职业生涯提供必要的技能。本研究项目针对确定性相场模型和随机相场模型开发了一些精确而高效的数值算法。在确定性情况下,讨论了一般相场模型在不同空间中的最大误差边界及其对几何流的逼近,自适应双网格算法,以及四阶相场模型对拓扑变化具有鲁棒性的优化算法。为了更好地研究理论结果和预测其他新的结果,将开发一套相场模型和几何流。在随机情况下,重点讨论了四阶随机相场模型的离散稳定性和收敛性结果,以及利用随机抛物对偶性的二阶随机相场模型的离散稳定性和收敛性结果,为随机几何流的近似提供了理论基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yukun Li其他文献
Modeling technology of InP heterojunction bipolar transistor for THz integrated circuit
太赫兹集成电路用InP异质结双极晶体管建模技术
- DOI:
10.1002/jnm.2579 - 发表时间:
2019-02 - 期刊:
- 影响因子:0
- 作者:
Yong Zhang;Yapei Chen;Yukun Li;Kun Qu;Tianhao Ren - 通讯作者:
Tianhao Ren
A layer-wise deep stacking model for social image popularity prediction
用于社交图像流行度预测的分层深度堆叠模型
- DOI:
10.1007/s11280-018-0590-1 - 发表时间:
2018-05 - 期刊:
- 影响因子:3.7
- 作者:
Zehang Lin;Feitao Huang;Yukun Li;Zhenguo Yang;Wenyin Liu - 通讯作者:
Wenyin Liu
Review of Research on the Accrual Anomaly in Capital Market
资本市场应计异象研究综述
- DOI:
10.1007/978-3-642-25538-0_55 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Haihong Shao;Xiaofeng Ju;Yukun Li - 通讯作者:
Yukun Li
Switchable Magnetic Anisotropy of Ferromagnet by Dual-ion Manipulated Orbital Engineering
通过双离子操纵轨道工程可切换铁磁体的磁各向异性
- DOI:
10.1021/acsami.9b09342 - 发表时间:
2019 - 期刊:
- 影响因子:9.5
- 作者:
Lei Wang;Chun Feng;Yukun Li;Fei Meng;Shiru Wang;Mingke Yao;Xiulan Xu;Feng Yang;Baohe Li;Guanghua Yu - 通讯作者:
Guanghua Yu
Comparison of the laser spot movement inside cylindrical and spherical hohlraums
圆柱形和球形空腔内激光光斑运动的比较
- DOI:
10.1063/1.4993184 - 发表时间:
2017 - 期刊:
- 影响因子:2.2
- 作者:
Zhichao Li;Dong Yang;Sanwei Li;Wen Yi Huo;Ke Lan;Jie Liu;Guoli Ren;Yao-Hua Chen;Zhiwen Yang;Liang Guo;Lifei Hou;Xufei Xie;Yukun Li;Keli Deng;Zheng Yuan;Xiayu Zhan;Guanghui Yuan;Haijun Zhang;Baibin Jiang;Lizhen Huang;Kai Du;Runchang Zhao;Ping Li;Wei Wang;J - 通讯作者:
J
Yukun Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Methods for deterministic treatment effect estimates for clinical trials with missing data
缺失数据的临床试验的确定性治疗效果估计方法
- 批准号:
2886293 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Studentship
SHF: Small: Efficient, Deterministic and Formally Certified Methods for Solving Low-dimensional Linear Programs with Floating-point Precision
SHF:小型:用于以浮点精度求解低维线性程序的高效、确定性且经过正式认证的方法
- 批准号:
2312220 - 财政年份:2023
- 资助金额:
$ 10.1万 - 项目类别:
Standard Grant
High performance deterministic radiation transport methods for SMRs
SMR 的高性能确定性辐射传输方法
- 批准号:
2764480 - 财政年份:2022
- 资助金额:
$ 10.1万 - 项目类别:
Studentship
High performance and high fidelity deterministic neutron transport methods for nuclear reactor lattice physics simulations
用于核反应堆晶格物理模拟的高性能和高保真度确定性中子输运方法
- 批准号:
2764533 - 财政年份:2022
- 资助金额:
$ 10.1万 - 项目类别:
Studentship
Novel Discontinuous Galerkin Methods for Deterministic and Stochastic Optimization Problems with Inequality Constraints
具有不等式约束的确定性和随机优化问题的新型间断伽辽金方法
- 批准号:
2111004 - 财政年份:2021
- 资助金额:
$ 10.1万 - 项目类别:
Continuing Grant
High Performance, Deterministic, Radiation Transport Methods for Radiation Shielding Analyses of Small Modular Reactors
用于小型模块化反应堆辐射屏蔽分析的高性能、确定性辐射传输方法
- 批准号:
2462182 - 财政年份:2020
- 资助金额:
$ 10.1万 - 项目类别:
Studentship
Arc failure detection and location within power electronics based distribution systems using deterministic and heuristic signal processing methods
使用确定性和启发式信号处理方法在基于电力电子的配电系统中进行电弧故障检测和定位
- 批准号:
2429127 - 财政年份:2020
- 资助金额:
$ 10.1万 - 项目类别:
Studentship
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
- 批准号:
1800852 - 财政年份:2018
- 资助金额:
$ 10.1万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
- 批准号:
1764403 - 财政年份:2018
- 资助金额:
$ 10.1万 - 项目类别:
Continuing Grant
Multivariate methods for combining deterministic model output and monitoring data for spatial-temporal interpolation
结合确定性模型输出和监测数据进行时空插值的多元方法
- 批准号:
155802-2013 - 财政年份:2017
- 资助金额:
$ 10.1万 - 项目类别:
Discovery Grants Program - Individual