Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods

合作研究:非线性偏微分方程的动力学:集成确定性和概率方法

基本信息

  • 批准号:
    1800852
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

We interact with waves all the time and everywhere. When we listen to music, when we use our cell phones, when we warm up a dinner in a microwave, when we look at the stars in the sky and when we relax on a sunny beach. But wave phenomena may also affect the lives of millions of people when earthquakes shake and propagate, tsunamis form or nuclear radiations get out of control. Indeed, waves naturally arise occur in a variety of physical systems such as nonlinear optics, atmosphere and ocean waves, quantum mechanics and plasmas. The study of waves is fundamental for the understanding of phenomena at both a very small scale, such as the Bose-Einstein Condensate, and at a very large one, such as collusion of galaxies. These expressions of nature are never too smooth and rarely too simple: interactions of small waves can produce very large outcomes, such as freak waves, while complicated objects such as solitons almost do not see each other when they cross. Phenomena such as these are the byproduct of nonlinear wave interactions, and understanding what are the possible outcomes, given the initial state of a system of waves, is fundamental to predict and to control it, hopefully to our advantage. In this NSF supported research the PIs present a series of projects at the cutting edge of research in nonlinear wave phenomena in which deterministic approaches, classically based on harmonic and Fourier analysis, are implemented alongside probabilistic ones to capture basic properties of wave phenomena. It has become clear in recent years that deterministic methods and probabilistic ones naturally feed off each other and when combined not only contribute to our understanding but also open the door to new paradigms to move research forward in various directions. More precisely, the PIs propose four projects at the forefront of nonlinear evolution equations, where the interplay of deterministic and probabilistic approaches is the key to make progress. The problems range from the study of weak turbulence for dispersive and fluid equations to the analysis of integrable structures, from the definition of Gibbs type measures to the probabilistic existence and stability of certain geometric flows enjoying null form nonlinearities. The probabilistic component of PIs' work in the last few years has contributed in bridging the dispersive and wave nonlinear equations community with that specialized in stochastic partial differential equations. This interaction has created ongoing collaborations between members of these two communities. The work that the PIs, their students and collaborators will generate in solving the problems described in this project will further solidify the interactions between these two vibrant communities. The broader impact component of the project aims at fostering the training of doctoral graduate students and junior researchers in the US, thus fundamentally contributing to the STEM workforce. It will also enhance dissemination and collaborative research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们随时随地都在与波相互作用。当我们听音乐时,当我们使用手机时,当我们用微波炉加热晚餐时,当我们看着天空中的星星时,当我们在阳光明媚的海滩上放松时。但是,当地震震动和传播、海啸形成或核辐射失控时,波动现象也可能影响数百万人的生活。 事实上,波自然地出现在各种物理系统中,如非线性光学,大气和海洋波,量子力学和等离子体。波的研究对于理解非常小尺度的现象(如玻色-爱因斯坦凝聚)和非常大尺度的现象(如星系的勾结)都是至关重要的。自然界的这些表现形式从来不会太平滑,也很少太简单:小波的相互作用可以产生非常大的结果,如反常波,而复杂的物体,如孤子,在交叉时几乎看不到对方。像这样的现象是非线性波相互作用的副产品,在给定波系统的初始状态的情况下,了解可能的结果是什么,是预测和控制它的基础,希望对我们有利。在NSF支持的研究中,PI提出了一系列处于非线性波动现象研究前沿的项目,其中确定性方法(经典上基于谐波和傅立叶分析)与概率方法一起实施,以捕获波动现象的基本特性。近年来,确定性方法和概率性方法自然地相互补充,当它们结合在一起时,不仅有助于我们的理解,而且为新的范式打开了大门,使研究朝着各个方向前进。更确切地说,PI在非线性演化方程的最前沿提出了四个项目,其中确定性和概率方法的相互作用是取得进展的关键。问题的范围从弱湍流的色散和流体方程的研究,分析可积结构,从吉布斯型措施的定义,以概率存在和稳定的某些几何流享受零形式的非线性。在过去的几年里,PI的工作的概率组成部分在弥合色散和波动非线性方程社会与专门从事随机偏微分方程。这种互动使这两个社区的成员之间不断合作。PI,他们的学生和合作者在解决本项目中描述的问题时所做的工作将进一步巩固这两个充满活力的社区之间的互动。该项目更广泛的影响部分旨在促进美国博士研究生和初级研究人员的培训,从而从根本上促进STEM劳动力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Random tensors, propagation of randomness, and nonlinear dispersive equations
  • DOI:
    10.1007/s00222-021-01084-8
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Yu Deng;A. Nahmod;H. Yue
  • 通讯作者:
    Yu Deng;A. Nahmod;H. Yue
Randomness and Nonlinear Evolution Equations
随机性和非线性演化方程
  • DOI:
    10.1007/s10114-019-8297-5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nahmod, Andrea R.;Staffilani, Gigliola
  • 通讯作者:
    Staffilani, Gigliola
Uniqueness of the 2D Euler equation on a corner domain with non-constant vorticity around the corner
拐角附近有非恒定涡度的拐角域上二维欧拉方程的唯一性
  • DOI:
    10.1088/1361-6544/ac586a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Agrawal, Siddhant;Nahmod, Andrea R
  • 通讯作者:
    Nahmod, Andrea R
Almost sure boundedness of iterates for derivative nonlinear wave equations
导数非线性波动方程迭代的几乎确定有界性
  • DOI:
    10.4310/cag.2020.v28.n4.a5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Chanillo, Sagun;Czubak, Magdalena;Mendelso, Dana;Nahmod, Andrea;Staffilani, Gigliola
  • 通讯作者:
    Staffilani, Gigliola
Invariant Gibbs measure and global strong solutions for the Hartree NLS equation in dimension three
  • DOI:
    10.1063/5.0045062
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Yu Deng;A. Nahmod;H. Yue
  • 通讯作者:
    Yu Deng;A. Nahmod;H. Yue
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Nahmod其他文献

Andrea Nahmod的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Nahmod', 18)}}的其他基金

New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Propagation of Randomness in Nonlinear Evolution Equations
非线性演化方程中随机性的传播
  • 批准号:
    2101381
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
  • 批准号:
    2052740
  • 财政年份:
    2021
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
  • 批准号:
    1463714
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
New Challenges in Nonlinear PDEs.
非线性偏微分方程的新挑战。
  • 批准号:
    1201443
  • 财政年份:
    2012
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Nonlinear Fourier Analysis and Partial Differential Equations
非线性傅里叶分析和偏微分方程
  • 批准号:
    0803160
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Nonlinear Fourier Analysis And Geometric Dispersive Equations.
非线性傅里叶分析和几何色散方程。
  • 批准号:
    0503542
  • 财政年份:
    2005
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Harmonic Analysis and Geometric Partial Differential Equations
调和分析与几何偏微分方程
  • 批准号:
    0202139
  • 财政年份:
    2002
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Harmonic Analysis and Partial Differential Equations
调和分析和偏微分方程
  • 批准号:
    9971159
  • 财政年份:
    1999
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Snapping of Tethers
合作研究:系绳折断动力学
  • 批准号:
    2310665
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348955
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了