High-Order Invariant Domain Preserving Approximations of Multiphysics Systems of Conservation Equations

守恒方程多物理场系统的高阶不变域保近似

基本信息

  • 批准号:
    2110868
  • 负责人:
  • 金额:
    $ 59.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to construct robust approximation techniques for nonlinear conservation systems on unstructured meshes in one, two, and three space dimensions. This class of problems touches many fields in engineering (mechanical, aerospace, nuclear, ocean, etc.) and in sciences (geophysics, astrophysics). A new set of novel robust approximation techniques for solving complex nonlinear conservation equations in realistic settings will also benefit numerous applications that involve models mixing hyperbolicity with other physical effects such as diffusion and dispersion. The results of this project will be disseminated through graduate classes, mentoring of students, seminars, conference presentations, publications, and direct collaborations with colleagues working at various US institutions. The material developed in this project will be incorporated in an advanced class on conservation equations that is given every two years in the Department of Mathematics at Texas A&M.In this project, robustness means that the proposed methods are guaranteed to deliver solutions that satisfy physical and thermodynamical constraints (in general based on quasi-concave or concave functionals). Robustness also means that some asymptotic properties of the solution may be preserved by the approximation even if the mesh is not fine enough to be in some asymptotic range (i.e., locking must be avoided). These types of methods are often said to be asymptotic preserving in the literature. Finally, the algorithms we have in mind must depend very little on the space discretization at hand and be simple enough to be programed by users with very little know-how in numerical analysis and on the mathematical structure of the nonlinear system. The project will heavily rely on the solid theoretical foundations recently established by the PIs and will be organized around three objectives: (i) construct algorithms for nonlinear hyperbolic systems that are robust with respect to the polynomial degree, the mesh structure, and have very few (if any) tuning parameters; (ii) construct approximation techniques that are robust for models mixing hyperbolicity with other physical effects such as diffusion and dispersion; (iii) construct techniques that will guarantee that realistic physical bounds and thermodynamical inequalities are satisfied for the discrete approximation even when incomplete knowledge of the physics is available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画的目标是在一、二、三个空间维度的非结构化网格上,建构非线性守恒系统的强健逼近技术。这类问题涉及工程学的许多领域(机械、航空航天、核能、海洋等)。和科学(天体物理学,天体物理学)。一套新的鲁棒近似技术,用于解决复杂的非线性守恒方程在现实环境中,也将有利于许多应用程序,涉及模型混合双曲性与其他物理效应,如扩散和色散。该项目的成果将通过研究生课程、学生辅导、研讨会、会议演示、出版物以及与美国各机构同事的直接合作进行传播。在这个项目中开发的材料将被纳入一个先进的类守恒方程,每两年在数学系在得克萨斯州A M.在这个项目中,鲁棒性意味着所提出的方法保证提供解决方案,满足物理和物理约束(一般基于准凹或凹泛函)。鲁棒性还意味着,即使网格不够精细到处于某个渐近范围内(即,必须避免锁定)。这些类型的方法在文献中通常被认为是渐近保持的。最后,我们所考虑的算法必须很少依赖于手头的空间离散化,并且足够简单,以便在数值分析和非线性系统的数学结构方面知之甚少的用户进行编程。该项目将在很大程度上依赖于PI最近建立的坚实的理论基础,并将围绕三个目标组织:(i)构建非线性双曲系统的算法,这些算法在多项式次数,网格结构方面是鲁棒的,并且具有很少的(如果有的话)调谐参数;(ii)构建近似技术,该技术对于将双曲性与扩散和分散等其他物理效应混合的模型是稳健的;(三)该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Well-Balanced Second-Order Convex Limiting Technique for Solving the Serre–Green–Naghdi Equations
求解 Serre–Green–Naghdi 方程的均衡二阶凸极限技术
  • DOI:
    10.1007/s42286-022-00062-8
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guermond, Jean-Luc;Kees, Chris;Popov, Bojan;Tovar, Eric
  • 通讯作者:
    Tovar, Eric
Second-Order Invariant Domain Preserving ALE Approximation of Euler Equations
On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier–Stokes equations
针对可压缩纳维斯托克斯方程实现鲁棒且高效的基于有限元的并行求解器
Robust second-order approximation of the compressible Euler equations with an arbitrary equation of state
具有任意状态方程的可压缩欧拉方程的鲁棒二阶近似
  • DOI:
    10.1016/j.jcp.2023.111926
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Clayton, Bennett;Guermond, Jean-Luc;Maier, Matthias;Popov, Bojan;Tovar, Eric J.
  • 通讯作者:
    Tovar, Eric J.
Invariant-Domain-Preserving High-Order Time Stepping: I. Explicit Runge--Kutta Schemes
保持不变域的高阶时间步进:I.显式龙格--库塔方案
  • DOI:
    10.1137/21m145793x
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Ern, Alexandre;Guermond, Jean-Luc
  • 通讯作者:
    Guermond, Jean-Luc
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bojan Popov其他文献

Finite element-based invariant-domain preserving approximation of hyperbolic systems: Beyond second-order accuracy in space
基于有限元的双曲型系统不变域保持逼近:超越空间二阶精度
L 1-minimization methods for Hamilton–Jacobi equations: the one-dimensional case
  • DOI:
    10.1007/s00211-008-0142-1
  • 发表时间:
    2008-02-08
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Jean-Luc Guermond;Bojan Popov
  • 通讯作者:
    Bojan Popov
Invariant-domain preserving and locally mass conservative approximation of the Lagrangian hydrodynamics equations
拉格朗日流体动力学方程的保不变域且局部质量守恒近似
First-Order Greedy Invariant-Domain Preserving Approximation for Hyperbolic Problems: Scalar Conservation Laws, and p-System
  • DOI:
    10.1007/s10915-024-02592-4
  • 发表时间:
    2024-06-27
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Jean-Luc Guermond;Matthias Maier;Bojan Popov;Laura Saavedra;Ignacio Tomas
  • 通讯作者:
    Ignacio Tomas
One-sided stability and convergence of the Nessyahu–Tadmor scheme
  • DOI:
    10.1007/s00211-006-0015-4
  • 发表时间:
    2006-09-13
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Bojan Popov;Ognian Trifonov
  • 通讯作者:
    Ognian Trifonov

Bojan Popov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bojan Popov', 18)}}的其他基金

HIGH-ORDER INVARIANT DOMAIN PRESERVING NUMERICAL METHODS FOR NONLINEAR HYPERBOLIC SYSTEMS
非线性双曲系统高阶不变域保持数值方法
  • 批准号:
    1619892
  • 财政年份:
    2016
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Standard Grant
High-order approximation techniques for nonlinear hyperbolic PDEs
非线性双曲偏微分方程的高阶近似技术
  • 批准号:
    1217262
  • 财政年份:
    2012
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Continuing Grant
L1-based Approximation Techniques for PDEs
基于 L1 的偏微分方程近似技术
  • 批准号:
    0811041
  • 财政年份:
    2008
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: A Task-Invariant Customization Framework for Lower-Limb Exoskeletons to Assist Volitional Human Motion
职业生涯:用于辅助人类意志运动的下肢外骨骼的任务不变定制框架
  • 批准号:
    2340261
  • 财政年份:
    2024
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Standard Grant
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Standard Grant
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
  • 批准号:
    2349623
  • 财政年份:
    2024
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Continuing Grant
Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
  • 批准号:
    2348792
  • 财政年份:
    2024
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Standard Grant
Toward a scale invariant theory for the early Universe and elementary particles
早期宇宙和基本粒子的尺度不变理论
  • 批准号:
    23K03383
  • 财政年份:
    2023
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Data-Driven Invariant Sets for Provably Safe Autonomy
协作研究:数据驱动的不变集可证明安全的自治
  • 批准号:
    2303157
  • 财政年份:
    2023
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Standard Grant
On a Combinatorial Characterization of Dynamical Invariant Sets of Regulatory Networks
关于调节网络动态不变集的组合表征
  • 批准号:
    23K03240
  • 财政年份:
    2023
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
  • 批准号:
    22K13904
  • 财政年份:
    2023
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A study of solutions of the Painleve equation derived from monodromy invariant Hermitian forms.
研究从单向不变埃尔米特形式导出的 Painleve 方程的解。
  • 批准号:
    22KJ2518
  • 财政年份:
    2023
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Identifying patient invariant parameters for diagnosis using terahertz sensing
使用太赫兹传感识别患者不变参数进行诊断
  • 批准号:
    2869381
  • 财政年份:
    2023
  • 资助金额:
    $ 59.21万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了