Models and Algorithms for Optimal Vision-Based Surveillance and Exploration of Complex Environments
基于最佳视觉的复杂环境监控和探索的模型和算法
基本信息
- 批准号:2110895
- 负责人:
- 金额:$ 40.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The PI plans to develop the mathematics and corresponding algorithms to determine optimal locations to observe and map out complex unknown domains with moving obstacles. This project is motivated by the increasing number of sensor-equipped mobile robotic devices and unmanned vehicles required to perform surveillance missions. In many of these missions, efficiency is essential — maximizing the information gain with minimal measurements by the sensors (observations) reduces data transmission, power consumption and increases robustness and capacity. Such optimization is the principal aim of the research program. This grant will support 1 graduate student per year for the 3 year duration of the grant. The PI will develop iterative greedy algorithms that determine observation locations to optimize each step's information gain. The "gain" is formulated as an integral operator on the domain shape and is costly to compute. The PI proposes developing Deep Learning approaches that make computations feasible, particularly when the domain shapes are at best partially known. The proposed algorithms will require generating training data by offline numerical simulations. This approach is crucial to sample high-dimensional shape space in a manner consistent with the dynamical processes dictated by the governing mathematical algorithms. This project includes three main thrusts: 1) Development of non-myopic greedy algorithms and study their properties and efficiency. 2) Development of Deep Learning models and data generation for learning the gain functions. 3) Development of mathematical understanding of U-net used the Deep Learning models used in the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PI计划开发数学和相应的算法,以确定观察和绘制具有移动障碍物的复杂未知区域的最佳位置。这个项目的动机是越来越多的传感器配备的移动的机器人设备和无人驾驶车辆需要执行监视任务。在许多这些任务中,效率是至关重要的-通过传感器的最小测量(观察)最大限度地提高信息增益,减少数据传输,功耗,并提高鲁棒性和容量。这种优化是研究计划的主要目标。该补助金将支持每年1名研究生,为期3年。PI将开发迭代贪婪算法,确定观察位置,以优化每一步的信息增益。 “增益”被公式化为域形状上的积分算子,并且计算成本高。PI建议开发深度学习方法,使计算变得可行,特别是当域形状充其量只是部分已知时。所提出的算法需要通过离线数值模拟生成训练数据。这种方法是至关重要的采样高维形状空间的方式一致的动态过程所规定的数学算法。本项目主要包括三个方面的工作:1)开发非近视贪婪算法,并研究其性质和效率。2)开发深度学习模型和数据生成,用于学习增益函数。3)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Side effects of learning from low-dimensional data embedded in a Euclidean space
- DOI:10.1007/s40687-023-00378-y
- 发表时间:2022-03
- 期刊:
- 影响因子:1.2
- 作者:Juncai He;R. Tsai;Rachel A. Ward
- 通讯作者:Juncai He;R. Tsai;Rachel A. Ward
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yen-Hsi Tsai其他文献
Yen-Hsi Tsai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yen-Hsi Tsai', 18)}}的其他基金
Extensions of Boundary Integro-Differential Operators and the Associated Computational Methods
边界积分微分算子的推广及相关计算方法
- 批准号:
1720171 - 财政年份:2017
- 资助金额:
$ 40.96万 - 项目类别:
Standard Grant
A novel boundary integral formulation for dynamic implicit interfaces
一种新颖的动态隐式接口边界积分公式
- 批准号:
1318975 - 财政年份:2013
- 资助金额:
$ 40.96万 - 项目类别:
Standard Grant
Dynamic Visibility and Inverse Source Problems in Unknown Environments with Complicated Topology.
具有复杂拓扑的未知环境中的动态可见性和逆源问题。
- 批准号:
0914840 - 财政年份:2009
- 资助金额:
$ 40.96万 - 项目类别:
Continuing Grant
Collaborative Research: ATD (Algorithms for Threat Detection): Inverse Problems Methods in Chemical Threat Detection
合作研究:ATD(威胁检测算法):化学威胁检测中的反问题方法
- 批准号:
0914465 - 财政年份:2009
- 资助金额:
$ 40.96万 - 项目类别:
Standard Grant
Variational Approaches to Optimizations and Adaptivity in Problems Involving Visibility
涉及可见性问题的优化和自适应变分方法
- 批准号:
0513394 - 财政年份:2005
- 资助金额:
$ 40.96万 - 项目类别:
Continuing Grant
相似海外基金
Optimal Grain Diagrams: Mathematical Analysis and Algorithms
最佳晶粒图:数学分析和算法
- 批准号:
EP/X035883/1 - 财政年份:2023
- 资助金额:
$ 40.96万 - 项目类别:
Research Grant
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
- 批准号:
23K13359 - 财政年份:2023
- 资助金额:
$ 40.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
- 批准号:
2318611 - 财政年份:2023
- 资助金额:
$ 40.96万 - 项目类别:
Standard Grant
FET: Small: An Integrated Framework for the Optimal Control of Open Quantum Systems --- Theory, Quantum Algorithms, and Applications
FET:小型:开放量子系统最优控制的集成框架 --- 理论、量子算法和应用
- 批准号:
2312456 - 财政年份:2023
- 资助金额:
$ 40.96万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
- 批准号:
2318612 - 财政年份:2023
- 资助金额:
$ 40.96万 - 项目类别:
Standard Grant
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
- 批准号:
2327113 - 财政年份:2023
- 资助金额:
$ 40.96万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223871 - 财政年份:2022
- 资助金额:
$ 40.96万 - 项目类别:
Standard Grant
AF: Small: New Techniques for Optimal Bounds on MCMC Algorithms
AF:小:MCMC 算法最优边界的新技术
- 批准号:
2147094 - 财政年份:2022
- 资助金额:
$ 40.96万 - 项目类别:
Standard Grant
Optimal Online Machine Learning Algorithms
最佳在线机器学习算法
- 批准号:
555789-2020 - 财政年份:2022
- 资助金额:
$ 40.96万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: AF: Small: Efficient Algorithms for Optimal Transport in Geometric Settings
合作研究:AF:小:几何设置中最佳传输的高效算法
- 批准号:
2223870 - 财政年份:2022
- 资助金额:
$ 40.96万 - 项目类别:
Standard Grant