Extensions of Boundary Integro-Differential Operators and the Associated Computational Methods
边界积分微分算子的推广及相关计算方法
基本信息
- 批准号:1720171
- 负责人:
- 金额:$ 20.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will advance computer-based simulations for better process control and prediction in a wide range of applications; these include seismic imaging, petroleum engineering, electromagnetism in domains containing thin-wires, and molecular biology applications where molecular electrostatics energies are needed to understand the structure-function relations of proteins. The training of students in the proposed research areas, both through direct supervision of the PI or through the new graduate course to be developed, will allow them to conduct research in highly inter-disciplinary projects and bring state-of-the-art numerical analysis and computational algorithms to the related areas.This research project will develop a general framework for formulating extension of a class of boundary integro-differential operators for numerical computation. The main advantage of the framework is that simple and accurate numerical algorithms can easily be designed on a variety of grid geometries and computational methodologies. The research will concentrate on (i) boundary integro-differential equations that arise from wave scattering problems in unbounded domains containing irregularly shaped scattering surfaces, and (ii) calculus of variation problems posed on manifolds of different codimensions. Regarding to (ii), minimization of convex energies and least-action principles defined on the manifolds will be considered. The minimization problems lead to elliptic equations on surfaces while the least-action principles lead to hyperbolic equations. A major focus will be on deriving extensions of these boundary operators "to the bulk", while preserving as much analytical properties (of the operators and of the solutions) as possible, using the additional degrees of freedom that come from the codimensions of the boundary. Concrete applications involving electromagnetic wave propagation coupled with thin-wires in space will be studied and simulated under the framework.
该研究项目将推进基于计算机的模拟,以便在广泛的应用中实现更好的过程控制和预测;这些应用包括地震成像,石油工程,包含细线的领域中的电磁学,以及分子生物学应用,其中需要分子静电能量来理解蛋白质的结构-功能关系。学生在拟议的研究领域的培训,无论是通过PI的直接监督或通过新的研究生课程开发,将使他们能够在高度跨学科的项目中进行研究,并将最先进的数值分析和计算算法带到相关领域。该研究项目将开发一个通用框架,用于制定一类边界积分的扩展,数值计算的微分算子。该框架的主要优点是,简单而准确的数值算法可以很容易地设计在各种网格的几何形状和计算方法。研究将集中在(i)边界积分微分方程,从包含不规则形状的散射表面的无界域中的波散射问题,以及(ii)微积分的变化问题上提出的不同余维流形。关于(ii),将考虑定义在流形上的凸能量最小化和最小作用原理。最小化问题导致椭圆方程的表面,而最小作用原理导致双曲方程。一个主要的重点将是衍生这些边界运营商的扩展“到散装”,同时保留尽可能多的分析性能(运营商和解决方案),使用额外的自由度,来自边界的余维。具体的应用,包括电磁波传播耦合细导线在空间中将进行研究和模拟的框架下。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Multiscale Domain Decomposition Algorithm for Boundary Value Problems for Eikonal Equations
程函方程边值问题的多尺度域分解算法
- DOI:10.1137/18m1186927
- 发表时间:2019
- 期刊:
- 影响因子:1.6
- 作者:Martin, Lindsay;Tsai, Yen-Hsi R.
- 通讯作者:Tsai, Yen-Hsi R.
Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces
Hamilton-Jacobi-Bellman方程在超曲面上的等价推广
- DOI:10.1007/s10915-020-01292-z
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Martin, Lindsay;Tsai, Yen-Hsi Richard
- 通讯作者:Tsai, Yen-Hsi Richard
Autonomous Exploration, Reconstruction, and Surveillance of 3D Environments Aided by Deep Learning
- DOI:10.1109/icra.2019.8794426
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Louis Ly;Y. Tsai
- 通讯作者:Louis Ly;Y. Tsai
Strategy Synthesis for Surveillance-Evasion Games with Learning-Enabled Visibility Optimization
具有学习能力的可见性优化的监视规避游戏的策略综合
- DOI:10.1109/cdc40024.2019.9029426
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bharadwaj, Suda;Ly, Louis;Wu, Bo;Tsai, Richard;Topcu, Ufuk
- 通讯作者:Topcu, Ufuk
Volumetric variational principles for a class of partial differential equations defined on surfaces and curves: In memory of Heinz-Otto Kreiss
在曲面和曲线上定义的一类偏微分方程的体积变分原理:纪念 Heinz-Otto Kreiss
- DOI:10.1007/s40687-018-0137-1
- 发表时间:2018
- 期刊:
- 影响因子:1.2
- 作者:Chu, Jay;Tsai, Richard
- 通讯作者:Tsai, Richard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yen-Hsi Tsai其他文献
Yen-Hsi Tsai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yen-Hsi Tsai', 18)}}的其他基金
Models and Algorithms for Optimal Vision-Based Surveillance and Exploration of Complex Environments
基于最佳视觉的复杂环境监控和探索的模型和算法
- 批准号:
2110895 - 财政年份:2021
- 资助金额:
$ 20.98万 - 项目类别:
Standard Grant
A novel boundary integral formulation for dynamic implicit interfaces
一种新颖的动态隐式接口边界积分公式
- 批准号:
1318975 - 财政年份:2013
- 资助金额:
$ 20.98万 - 项目类别:
Standard Grant
Dynamic Visibility and Inverse Source Problems in Unknown Environments with Complicated Topology.
具有复杂拓扑的未知环境中的动态可见性和逆源问题。
- 批准号:
0914840 - 财政年份:2009
- 资助金额:
$ 20.98万 - 项目类别:
Continuing Grant
Collaborative Research: ATD (Algorithms for Threat Detection): Inverse Problems Methods in Chemical Threat Detection
合作研究:ATD(威胁检测算法):化学威胁检测中的反问题方法
- 批准号:
0914465 - 财政年份:2009
- 资助金额:
$ 20.98万 - 项目类别:
Standard Grant
Variational Approaches to Optimizations and Adaptivity in Problems Involving Visibility
涉及可见性问题的优化和自适应变分方法
- 批准号:
0513394 - 财政年份:2005
- 资助金额:
$ 20.98万 - 项目类别:
Continuing Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Exploration of Anisotropy and Inhomogeneity of Ocean Boundary Layer Turbulence
海洋边界层湍流的各向异性和不均匀性探索
- 批准号:
2344156 - 财政年份:2024
- 资助金额:
$ 20.98万 - 项目类别:
Standard Grant
Facilities for Atmospheric Boundary Layer Evaluation and Testing
大气边界层评估和测试设施
- 批准号:
LE240100116 - 财政年份:2024
- 资助金额:
$ 20.98万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
- 批准号:
2340121 - 财政年份:2024
- 资助金额:
$ 20.98万 - 项目类别:
Continuing Grant
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
- 批准号:
EP/Y021983/1 - 财政年份:2024
- 资助金额:
$ 20.98万 - 项目类别:
Research Grant
AGS-FIRP Track 1: Enhancing Undergraduate Education of the Planetary Boundary Layer during the 2024 Solar Eclipse
AGS-FIRP 第 1 轨道:加强 2024 年日食期间行星边界层的本科教育
- 批准号:
2336464 - 财政年份:2024
- 资助金额:
$ 20.98万 - 项目类别:
Standard Grant
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
- 批准号:
2350049 - 财政年份:2024
- 资助金额:
$ 20.98万 - 项目类别:
Continuing Grant
Impact of roughness on adverse pressure gradient turbulent boundary layers
粗糙度对逆压梯度湍流边界层的影响
- 批准号:
DP240103015 - 财政年份:2024
- 资助金额:
$ 20.98万 - 项目类别:
Discovery Projects
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 20.98万 - 项目类别:
Standard Grant
CAREER: Investigating the tectono-magmatic response to a transitioning plate boundary: a case study of the California Borderlands
职业:研究板块过渡边界的构造岩浆响应:加州边境地区的案例研究
- 批准号:
2338594 - 财政年份:2024
- 资助金额:
$ 20.98万 - 项目类别:
Continuing Grant
Assessing the paleoenvironmental and geobiological significance of carbonates from the Eocene-Oligocene boundary of the White River Group
评估白河群始新世-渐新世边界碳酸盐的古环境和地球生物学意义
- 批准号:
2311532 - 财政年份:2024
- 资助金额:
$ 20.98万 - 项目类别:
Standard Grant