Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations

偏微分方程有限元与神经网络离散化的比较研究

基本信息

  • 批准号:
    2111387
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

This research connects two different fields, machine learning from data science and numerical partial differential equations from scientific and engineering computing, through the comparative study of the finite element method and finite neuron method. Finite element methods have undergone decades of study by mathematicians, scientists and engineers in many fields and there is a rich mathematical theory concerning them. They are widely used in scientific computing and modelling to generate accurate simulations of a wide variety of physical processes, most notably the deformation of materials and fluid mechanics. By contrast, deep neural networks are relatively new and have only been widely used in the last decade. In this short time, they have demonstrated remarkable empirical performance on a wide variety of machine learning tasks, most notably in computer vision and natural language processing. Despite this great empirical success, there is still a very limited mathematical understanding of why and how deep neural networks work so well. We hope to leverage the success of deep learning to improve numerical methods for partial differential equations and to leverage the theoretical understanding of the finite element method to better understand deep learning. The interdisciplinary nature of the research will also provide a good training experience for junior researchers. This project will support 1 graduate student each year of the three year project. Piecewise polynomials represent one of the most important functional classes in approximation theory. In classical approximation theory and numerical methods for partial differential equations, these functional classes are often represented by linear functional spaces associated with a priori given grids, for example, by splines and finite element spaces. In deep learning, function classes are typically represented by a composition of a sequence of linear functions and coordinate-wise non-linearities. One important non-linearity is the rectified linear unit (ReLU) function and its powers (ReLUk). The resulting functional class, ReLUk-DNN, does not form a linear vector space but is rather parameterized non-linearly by a high-dimensional set of parameters. This function class can be used to solve partial differential equations and we call the resulting numerical algorithms the finite neuron method (FNM). Proposed research topics include: error estimates for the finite neuron method, universal construction of conforming finite elements for arbitrarily high order partial differential equations, an investigation into how and why the finite neuron method gives a much better asymptotic error estimate than the corresponding finite element method, and the development and analysis of efficient algorithms for using the finite neuron method.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究通过有限元方法和有限神经元方法的比较研究,将数据科学中的机器学习和科学与工程计算中的数值偏微分方程这两个不同的领域联系起来。有限元法已经被许多领域的数学家、科学家和工程师研究了几十年,并形成了丰富的数学理论。它们广泛用于科学计算和建模,以生成各种物理过程的精确模拟,最显着的是材料和流体力学的变形。相比之下,深度神经网络相对较新,在过去十年中才得到广泛应用。在这么短的时间内,他们在各种机器学习任务上表现出了卓越的经验表现,尤其是在计算机视觉和自然语言处理方面。尽管在经验上取得了巨大的成功,但对于深度神经网络为什么以及如何工作得这么好,仍然存在非常有限的数学理解。我们希望利用深度学习的成功来改进偏微分方程的数值方法,并利用对有限元方法的理论理解来更好地理解深度学习。研究的跨学科性质也将为初级研究人员提供良好的培训经验。该项目将支持一个研究生每年的三年期项目。分段多项式是逼近论中最重要的函数类之一。 在偏微分方程的经典逼近理论和数值方法中,这些函数类通常由与先验给定网格相关联的线性函数空间表示,例如样条和有限元空间。在深度学习中,函数类通常由一系列线性函数和坐标非线性的组合表示。一个重要的非线性是整流线性单元(ReLU)函数及其幂(ReLUk)。 由此产生的函数类ReLUk-DNN并不形成线性向量空间,而是通过一组高维参数进行非线性参数化。 这个函数类可以用来解决偏微分方程,我们称之为有限神经元方法(FNM)的数值算法。建议的研究课题包括:有限神经元方法的误差估计,任意高阶偏微分方程协调有限元的通用构造,有限神经元方法如何以及为什么比相应的有限元方法给出更好的渐近误差估计的研究,以及使用有限神经元方法的有效算法的开发和分析。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Greedy training algorithms for neural networks and applications to PDEs
  • DOI:
    10.1016/j.jcp.2023.112084
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan W. Siegel;Q. Hong;Xianlin Jin;Wenrui Hao;Jinchao Xu
  • 通讯作者:
    Jonathan W. Siegel;Q. Hong;Xianlin Jin;Wenrui Hao;Jinchao Xu
Characterization of the Variation Spaces Corresponding to Shallow Neural Networks
  • DOI:
    10.1007/s00365-023-09626-4
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jonathan W. Siegel;Jinchao Xu
  • 通讯作者:
    Jonathan W. Siegel;Jinchao Xu
Sharp Bounds on the Approximation Rates, Metric Entropy, and n-Widths of Shallow Neural Networks
  • DOI:
    10.1007/s10208-022-09595-3
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Jonathan W. Siegel;Jinchao Xu
  • 通讯作者:
    Jonathan W. Siegel;Jinchao Xu
Approximation properties of deep ReLU CNNs
  • DOI:
    10.1007/s40687-022-00336-0
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Juncai He;Lin Li;Jinchao Xu
  • 通讯作者:
    Juncai He;Lin Li;Jinchao Xu
Optimal Convergence Rates for the Orthogonal Greedy Algorithm
正交贪婪算法的最优收敛率
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Siegel其他文献

Frequency and level dependence of the middle ear acoustic reflex and its decay measured in wideband absorbance with contralateral narrowband noise elicitors
中耳声反射的频率和水平依赖性及其衰减的测量,采用对侧窄带噪声刺激器的宽带吸光度
  • DOI:
    10.1016/j.heares.2025.109225
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Abbie Baricevich;Danielle Bassett;Sophia Chan;Shayna Lavi;Jonathan Siegel
  • 通讯作者:
    Jonathan Siegel
Capital Gains Realizations of the Rich and Sophisticated
富人和成熟人士的资本收益变现
  • DOI:
    10.1257/aer.90.2.276
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Auerbach;Jonathan Siegel
  • 通讯作者:
    Jonathan Siegel
P2.06-027 Randomized Phase II Study of Anetumab Ravtansine or Vinorelbine in Patients with Metastatic Pleural Mesothelioma: Topic: Mesothelioma and SCLC
  • DOI:
    10.1016/j.jtho.2016.11.1520
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Raffit Hassan;Ross Jennens;Jan Van Meerbeeck;John Nemunaitis;George Blumenschein;Dean Fennell;Hedy Kindler;Silvia Novello;Annette Walter;Danila Serpico;Jonathan Siegel;Ariadna Holynskyj;Barrett Childs;Cem Elbi
  • 通讯作者:
    Cem Elbi

Jonathan Siegel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Siegel', 18)}}的其他基金

Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
US Participation at the Twenty-sixth International Domain Decomposition Conference
美国参加第二十六届国际域名分解会议
  • 批准号:
    2216799
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Synaptic Physiology in the Isolated Mammalian Cochlea
离体哺乳动物耳蜗的突触生理学
  • 批准号:
    9114245
  • 财政年份:
    1991
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Studies of Cochlear Hair Cell Synaptic Mechanisms
耳蜗毛细胞突触机制的研究
  • 批准号:
    8217273
  • 财政年份:
    1983
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

相似海外基金

Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
On the study of the duality relations of finite and symmetric multiple zeta values using symmetrization maps
利用对称图研究有限对称多zeta值的对偶关系
  • 批准号:
    23K12962
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Theoretical development and computational implementation of Finite Temperature FAM method for study
有限温度 FAM 研究方法的理论发展和计算实现
  • 批准号:
    2895616
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
How Limits of Responses by Bureaucracy Are Accepted - Study of Normative Models under Finite Resources and the Effects of Code of Conduct
如何接受官僚反应的限度——有限资源下的规范模型与行为准则的影响研究
  • 批准号:
    23K01231
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of finite-temperature phase transition of QCD by gradient flow
梯度流QCD有限温度相变研究
  • 批准号:
    22K03593
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of saturated structures to the study of finite model theory
饱和结构在有限模型理论研究中的应用
  • 批准号:
    21K03336
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A theoretical and experimental study of the phasehood of finite clauses in natural languages
自然语言中有限子句的阶段性的理论和实验研究
  • 批准号:
    21K00579
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical study on finite temperature properties of spin transport phenomenon
自旋输运现象有限温度特性的理论研究
  • 批准号:
    20H02190
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of algebraic methods for Morita dual of finite tensor categories and related algebraic structures
有限张量范畴Morita对偶的代数方法及相关代数结构研究
  • 批准号:
    20K03520
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study on Data Assimilation of Finite Element Analysis Models Using the Digital Image Correlation Method
数字图像相关法有限元分析模型数据同化研究
  • 批准号:
    19K12006
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了