CRCNS Research Proposal: Computations for spatial-chromatic interactions and their physiological implementation in primary visual cortex
CRCNS 研究提案:空间色彩相互作用的计算及其在初级视觉皮层中的生理实现
基本信息
- 批准号:2113197
- 负责人:
- 金额:$ 64.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Color and form are often treated as separable features of an image. One can recognize shapes in achromatic photographs and conceptualize the color of an object abstracted from shape. Yet color-specific processing is embedded throughout the visual pathway from the first stage of the visual pathway, where three different types of light sensors (“cones”) with sensitivity to different parts of the visual spectrum initially convert light into electrical impulses. The color of a given point can in principle be determined by comparing the activation of the three different cone types, but the separate color channels are maintained until the primary visual cortex (V1), where they are finally combined in neurons that concurrently have sensitivity to different spatial patterns. Indeed, while it was initially thought that color and form were processed through separate pathways within V1, recent experiments have highlighted that a surprising fraction of V1 neurons mix them together in a diversity of ways. Exactly how the mixing occurs, and for what purpose, are critical open questions in understanding human vision, and have been difficult to answer because such mixing is too complicated to characterize using traditional approaches. This project combines large-scale recording of V1 neural activity during tailored “spatio-chromatic” visual stimulation with new computational approaches that offer an unprecedented high-resolution description of color processing within V1 while allowing determination of the underlying function of spatio-chromatic mixing in supporting natural color vision. The project also provides opportunity for cross-disciplinary training in neurophysiological and machine-learning based statistical modeling of undergraduate and graduate students.This project is a tight combination of visual neurophysiology, data-driven computational modeling, and simulation. The investigators perform large-scale multi-electrode recordings across cortical lamina to determine the transformations of spatio-chromatic representations from cortical inputs (where color channels are separate) to cortical outputs (where they are mixed). These recordings are interpreted using nonlinear data-driven models that can provide high-resolution spatio-chromatic maps of the stimuli driving each V1 neuron, and distinguish the underlying computations being performed at each stage. Such characterizations are pushed to achieve cone-resolution by leveraging novel model-based eye-tracking that can account for small eye movements with an order-of-magnitude finer sensitivity than standard approaches. The first Aim determines the set of principles governing how spatial and chromatic information is combined in V1, which sets the foundation for processing throughout the visual pathway. The second Aim determines whether these rules are the same in the area of cortex processing the center-of-gaze (fovea), which is responsible for high-acuity color vision. Finally, the last Aim establishes a population decoding framework for linking spatio-chromatic sensitivity of individual V1 cells to the larger systems-wide goals of the visual cortex in processing natural color vision.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
颜色和形状通常被视为图像中可分离的特征。人们可以在消色差照片中识别形状,并将从形状中抽象出来的物体的颜色概念化。然而,从视觉通路的第一阶段开始,特定颜色的处理就嵌入在整个视觉通路中,其中三种不同类型的光传感器(“锥”)对视觉光谱的不同部分具有灵敏度,最初将光转换为电脉冲。原则上,可以通过比较三种不同的视锥细胞类型的激活来确定给定点的颜色,但分离的颜色通道一直保持到初级视觉皮层(V1),在那里它们最终结合在同时对不同空间模式具有敏感性的神经元中。事实上,虽然最初认为颜色和形状是通过V1内部的不同途径处理的,但最近的实验强调,一部分V1神经元以多种方式将它们混合在一起。确切地说,混合是如何发生的,以及为了什么目的,是理解人类视觉的关键开放问题,并且很难回答,因为这种混合太复杂了,无法用传统方法来表征。该项目结合了量身定制的“空间-色彩”视觉刺激期间V1神经活动的大规模记录和新的计算方法,在V1中提供前所未有的高分辨率颜色处理描述,同时允许确定支持自然色彩视觉的空间-色彩混合的潜在功能。该项目还为本科生和研究生提供了基于神经生理学和机器学习的统计建模的跨学科培训机会。这个项目是视觉神经生理学、数据驱动的计算建模和仿真的紧密结合。研究人员在皮质层上进行大规模的多电极记录,以确定从皮质输入(其中颜色通道是分开的)到皮质输出(其中颜色通道是混合的)的空间颜色表征的转换。这些记录使用非线性数据驱动模型进行解释,该模型可以提供驱动每个V1神经元的刺激的高分辨率空间色图,并区分每个阶段正在执行的潜在计算。通过利用新颖的基于模型的眼动追踪技术,这些特征被推向了锥分辨率,这种方法可以用比标准方法更高的灵敏度来解释小的眼球运动。第一个目标决定了一套控制V1中空间和色彩信息如何组合的原则,这为整个视觉通路的处理奠定了基础。第二个目的是确定这些规则在处理注视中心(中央凹)的皮质区域是否相同,中央凹负责高灵敏度的色觉。最后,本文建立了一个群体解码框架,将单个V1细胞的空间色彩敏感性与视觉皮层在处理自然色觉过程中更大的系统范围目标联系起来。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Butts其他文献
Position statement on West Nile virus: a committee opinion
- DOI:
10.1016/j.fertnstert.2016.01.003 - 发表时间:
2016-05-01 - 期刊:
- 影响因子:
- 作者:
Samantha Practice Committees of the American Society for Reproductive Medicine;Samantha Pfeifer;Daniel Butts;Gregory Dumesic;Clarisa Fossum;Andrew Gracia;Jennifer La Barbera;Randall Mersereau;Richard Odem;Alan Paulson;Margareta Penzias;Robert Pisarska;Richard Rebar;Mitchell Reindollar;Jay Rosen;Michael Sandlow;Eric Vernon; Widra - 通讯作者:
Widra
Daniel Butts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Butts', 18)}}的其他基金
Collaborative Research: NCS-FO: Active vision during natural behavior: More than meets the eye?
合作研究:NCS-FO:自然行为期间的主动视觉:不仅仅是表面上看到的?
- 批准号:
2123568 - 财政年份:2021
- 资助金额:
$ 64.98万 - 项目类别:
Standard Grant
CAREER: Network modulation of cortical neuron computation
职业:皮质神经元计算的网络调制
- 批准号:
1350990 - 财政年份:2014
- 资助金额:
$ 64.98万 - 项目类别:
Continuing Grant
Characterizing Cortical Computation in the Context of Natural Vision
自然视觉背景下的皮质计算特征
- 批准号:
0904430 - 财政年份:2010
- 资助金额:
$ 64.98万 - 项目类别:
Continuing Grant
Postdoctoral Research Fellowship in Biological Informatics for FY2001
2001财年生物信息学博士后研究奖学金
- 批准号:
0107581 - 财政年份:2001
- 资助金额:
$ 64.98万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 64.98万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Modeling traveling waves in the human cortex
CRCNS 研究提案:模拟人类皮层中的行波
- 批准号:
2309174 - 财政年份:2023
- 资助金额:
$ 64.98万 - 项目类别:
Continuing Grant
CRCNS US-German Research Proposal - The diversification of retinal ganglion cells: A combined transcriptomic, genome engineering and imaging approach
CRCNS 美国-德国研究提案 - 视网膜神经节细胞的多样化:转录组学、基因组工程和成像相结合的方法
- 批准号:
2309039 - 财政年份:2023
- 资助金额:
$ 64.98万 - 项目类别:
Standard Grant
CRCNS Research Proposal: A Unified Framework for Unsupervised Sparse-to-dense Brain Image Generation and Neural Circuit Reconstruction
CRCNS 研究提案:无监督稀疏到密集脑图像生成和神经回路重建的统一框架
- 批准号:
2309073 - 财政年份:2023
- 资助金额:
$ 64.98万 - 项目类别:
Continuing Grant
CRCNS US-France Research Proposal: Neural computations of adaptive temporal integration in auditory cortex
CRCNS 美国-法国研究提案:听觉皮层自适应时间整合的神经计算
- 批准号:
2308725 - 财政年份:2023
- 资助金额:
$ 64.98万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Learning by Looking: Modeling visual system representation formation via foveated sensing in a 3-D world
CRCNS 研究提案:通过观察学习:通过 3D 世界中的注视点感知对视觉系统表征形成进行建模
- 批准号:
2309041 - 财政年份:2023
- 资助金额:
$ 64.98万 - 项目类别:
Continuing Grant
CRCNS Research Proposal: Novel computational approaches for neural speech prostheses and causal dynamics of language processing
CRCNS 研究提案:神经语音假体和语言处理因果动力学的新型计算方法
- 批准号:
2309057 - 财政年份:2023
- 资助金额:
$ 64.98万 - 项目类别:
Standard Grant
CRCNS US-German Research Proposal: Quantitative and Computational Dissection of Glutamatergic Crosstalk at Tripartite Synapses
CRCNS 美德研究提案:三方突触谷氨酸能串扰的定量和计算剖析
- 批准号:
10612169 - 财政年份:2023
- 资助金额:
$ 64.98万 - 项目类别:
CRCNS US-French Research Proposal: Impact of network state on corticocortical communication
CRCNS 美法研究提案:网络状态对皮质通讯的影响
- 批准号:
2207707 - 财政年份:2022
- 资助金额:
$ 64.98万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207770 - 财政年份:2022
- 资助金额:
$ 64.98万 - 项目类别:
Continuing Grant