CRCNS Research Proposal: Modeling neural dynamics of naturalistic movements across contexts
CRCNS 研究提案:对跨环境的自然运动的神经动力学进行建模
基本信息
- 批准号:2113271
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Everyday tasks, such as tying shoelaces, throwing a ball, reaching for a cup involve performing complex, require precise and coordinated hand and arm movements in various behavioral contexts. How our brain controls these rich movements; that is, the neural basis of motor control, remains elusive. Investigating this neural basis not only will advance our understanding of brain function, but also will have broad translational implications for developing brain-machine interfaces to restore function in disabled patients and for understanding neurological disorders such as Parkinson’s disease and devising deep brain stimulation therapies. This proposal investigates how a population of neurons in the motor cortex of the brain controls movements by utilizing motor experiments that record simultaneously from large motor cortical areas including thousands of neurons, and by leveraging computational tools that can uncover behaviorally relevant structure in the complex neural population data. This research involves a very close collaboration between computational and experimental methods. The experimental component incorporates a variety of different behavioral conditions that produce a rich repertoire of movements, while recording from large populations of motor cortical neurons in an animal model. The primary focus of this project is on the relationship between movement kinematics (the trajectory of motion) and the temporal dynamics of these large neuronal populations in motor and premotor cortex. To study this relationship, we analyze the computational component that characterizes neural population dynamics using a low-dimensional state variable that is directly related to behaviorally relevant movement kinematics. This is achieved by leveraging linear dynamical modeling methods that can identify low-dimensional behaviorally relevant state dynamics in motor cortical populations, examining how these states change, and modeling local and input dynamics during behavior. Integrating these computational and experimental components, will advance our understanding of the dynamical principles underlying how motor cortical population activity gives rise to rich movements and has the potential to lead to breakthroughs in restoring motor function in patients with impaired movement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
日常任务,如系鞋带,扔球,伸手拿杯子,涉及复杂的表演,需要在各种行为环境中精确和协调的手和手臂运动。我们的大脑是如何控制这些丰富的运动的,也就是说,运动控制的神经基础仍然是难以捉摸的。研究这种神经基础不仅将促进我们对大脑功能的理解,而且将对开发脑机接口以恢复残疾患者的功能以及理解帕金森病等神经系统疾病和设计脑深部电刺激疗法产生广泛的翻译影响。该提案研究了大脑运动皮层中的神经元群体如何通过利用运动实验来控制运动,这些运动实验同时记录了包括数千个神经元的大型运动皮层区域,并利用计算工具来揭示复杂神经群体数据中的行为相关结构。这项研究涉及计算和实验方法之间非常密切的合作。实验部分结合了各种不同的行为条件,产生丰富的运动曲目,同时记录动物模型中大量的运动皮层神经元。该项目的主要重点是运动运动学(运动轨迹)和运动前皮质中这些大型神经元群体的时间动力学之间的关系。为了研究这种关系,我们分析了计算组件,其特征神经种群动力学使用低维状态变量,这是直接相关的行为相关的运动学。这是通过利用线性动态建模方法来实现的,该方法可以识别运动皮层人群中的低维行为相关状态动态,检查这些状态如何变化,并在行为期间对局部和输入动态进行建模。将这些计算和实验组件整合在一起,将促进我们对运动皮层群体活动如何产生丰富运动的动力学原理的理解,并有可能在恢复运动受损患者的运动功能方面取得突破。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查进行评估来支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maryam Shanechi其他文献
Brain–computer interfaces for neuropsychiatric disorders
用于神经精神疾病的脑机接口
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lucine L. Oganesian;Maryam Shanechi - 通讯作者:
Maryam Shanechi
Closed-Loop BCI for the Treatment of Neuropsychiatric Disorders
用于治疗神经精神疾病的闭环脑机接口
- DOI:
10.1007/978-3-030-60460-8_12 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Omid G. Sani;Yuxiao Yang;Maryam Shanechi - 通讯作者:
Maryam Shanechi
A design of neural decoder by reducing discrepancy between Manual Control (MC) and Brain Control (BC)
通过减少手动控制(MC)和大脑控制(BC)之间的差异来设计神经解码器
- DOI:
10.1109/ecc.2014.6862547 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Y. Chang;Mo Chen;Maryam Shanechi;J. Carmena;C. Tomlin - 通讯作者:
C. Tomlin
Developing a Closed-Loop Brain-Computer Interface for Treatment of Neuropsychiatric Disorders Using Electrical Brain Stimulation
开发闭环脑机接口,利用脑电刺激治疗神经精神疾病
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yuxiao Yang;Omid G. Sani;Morgan B. Lee;Heather E. Dawes;E. Chang;Maryam Shanechi - 通讯作者:
Maryam Shanechi
Neural Decoding and Control of Mood to Treat Neuropsychiatric Disorders
- DOI:
10.1016/j.biopsych.2020.02.265 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Omid Sani;Yuxiao Yang;Morgan Lee;Kristin Sellers;Heather Dawes;Edward Chang;Maryam Shanechi - 通讯作者:
Maryam Shanechi
Maryam Shanechi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maryam Shanechi', 18)}}的其他基金
CAREER: Generalizable, Robust, and Closed-Loop Brain-Machine Interface Control Architectures
职业:通用、鲁棒、闭环脑机接口控制架构
- 批准号:
1453868 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Modeling traveling waves in the human cortex
CRCNS 研究提案:模拟人类皮层中的行波
- 批准号:
2309174 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CRCNS US-German Research Proposal - The diversification of retinal ganglion cells: A combined transcriptomic, genome engineering and imaging approach
CRCNS 美国-德国研究提案 - 视网膜神经节细胞的多样化:转录组学、基因组工程和成像相结合的方法
- 批准号:
2309039 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRCNS Research Proposal: A Unified Framework for Unsupervised Sparse-to-dense Brain Image Generation and Neural Circuit Reconstruction
CRCNS 研究提案:无监督稀疏到密集脑图像生成和神经回路重建的统一框架
- 批准号:
2309073 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CRCNS US-France Research Proposal: Neural computations of adaptive temporal integration in auditory cortex
CRCNS 美国-法国研究提案:听觉皮层自适应时间整合的神经计算
- 批准号:
2308725 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Learning by Looking: Modeling visual system representation formation via foveated sensing in a 3-D world
CRCNS 研究提案:通过观察学习:通过 3D 世界中的注视点感知对视觉系统表征形成进行建模
- 批准号:
2309041 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CRCNS Research Proposal: Novel computational approaches for neural speech prostheses and causal dynamics of language processing
CRCNS 研究提案:神经语音假体和语言处理因果动力学的新型计算方法
- 批准号:
2309057 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRCNS US-German Research Proposal: Quantitative and Computational Dissection of Glutamatergic Crosstalk at Tripartite Synapses
CRCNS 美德研究提案:三方突触谷氨酸能串扰的定量和计算剖析
- 批准号:
10612169 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
CRCNS US-French Research Proposal: Impact of network state on corticocortical communication
CRCNS 美法研究提案:网络状态对皮质通讯的影响
- 批准号:
2207707 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
- 批准号:
2207770 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant