Statistical Learning and Inference for Single-Cell RNA Sequencing
单细胞 RNA 测序的统计学习和推理
基本信息
- 批准号:2113646
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Single-cell genomics is an emerging technique that has become an indispensable tool for understanding cellular diversity and cell activities. Among the various single-cell sequencing technologies, single-cell RNA sequencing (scRNA-seq), simultaneously measuring tens of thousands of RNAs inside each individual cell, is the most mature and widely used technology. This project aims to develop new analytical tools for scRNA-seq with explicit and coherent statistical frameworks to provide reliable uncertainty quantification and inference. At the same time, the new tool will retain the scalability and user-friendly features in existing algorithmic-based methods. The PI will focus on building probabilistic models for machine learning frameworks such as deep learning and address new challenges to account for biological randomness and technical noise in scRNA-seq. The PI will develop open-source software for analyzing scRNA-seq data to help scientists understand cell development, the mechanism of gene regulation, and cell-type-specific features of common diseases. Because of the interdisciplinary feature of this project, it will also train both graduate and undergraduate students within and outside statistics to become future scientists in the fast-evolving area of applied statistics and computational biology.The PI plans to focus on three research problems that are unique to the analysis of single-cell data: trajectory inference, cell type deconvolution, and gene-gene co-expression / co-bursting. For trajectory inference, the PI will incorporate a hierarchical mixture model into a deep neural network to infer trajectories shared by cells from multiple sources. In the cell type deconvolution problem where scRNA-seq data are used as references to estimate cell type proportions in bulk samples, the PI will derive asymptotically valid confidence intervals of the estimated cell type proportions without parametric assumptions and account for three major uncertainty-inflation factors: the technical noise, biological heterogeneity across individuals, and dependence across genes. Finally, in the gene-gene co-expression / co-bursting analysis, the PI will estimate the true gene-gene correlation and co-bursting pattern from noisy observed data and design a scalable multiple testing framework that can efficiently find gene pairs that are co-expressed or co-bursted. The PI also aims to link the co-expression and co-bursting signals with the enhancer-promoter contacts in the three-dimensional genome structure to understand causal mechanisms of transcriptional regulation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
单细胞基因组学是一种新兴的技术,已成为了解细胞多样性和细胞活动的不可或缺的工具。在各种单细胞测序技术中,单细胞RNA测序(scRNA-seq),同时测量每个细胞内的数万个RNA,是最成熟和最广泛使用的技术。该项目旨在为scRNA-seq开发新的分析工具,具有明确和一致的统计框架,以提供可靠的不确定性量化和推断。与此同时,新工具将保留现有基于算法的方法的可扩展性和用户友好性。PI将专注于为深度学习等机器学习框架构建概率模型,并解决scRNA-seq中生物随机性和技术噪声的新挑战。PI将开发用于分析scRNA-seq数据的开源软件,以帮助科学家了解细胞发育,基因调控机制以及常见疾病的细胞类型特异性特征。由于该项目的跨学科特点,它还将培养统计学内外的研究生和本科生成为应用统计学和计算生物学快速发展领域的未来科学家。PI计划专注于单细胞数据分析所特有的三个研究问题:轨迹推断,细胞类型反卷积和基因-基因共表达/共爆发。对于轨迹推断,PI将分层混合模型纳入深度神经网络,以推断来自多个来源的细胞共享的轨迹。在细胞类型去卷积问题中,scRNA-seq数据用作参考以估计批量样品中的细胞类型比例,PI将在没有参数假设的情况下推导估计的细胞类型比例的渐近有效置信区间,并考虑三个主要的不确定性膨胀因素:技术噪声、个体间的生物异质性和基因间的依赖性。最后,在基因-基因共表达/共爆发分析中,PI将从噪声观测数据中估计真实的基因-基因相关性和共爆发模式,并设计可扩展的多测试框架,该框架可以有效地找到共表达或共爆发的基因对。PI还旨在将共表达和共爆发信号与三维基因组结构中的增强子-启动子接触联系起来,以了解转录调控的因果机制。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingshu Wang其他文献
Online Single-cell RNA-seq Data Denoising with Transfer Learning
通过迁移学习进行在线单细胞 RNA-seq 数据去噪
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bowei Kang;Eroma Abeysinghe;Divyansh Agarwal;Quanli Wang;Sudhakar Pamidighantam;Mo Huang;N. Zhang;Jingshu Wang - 通讯作者:
Jingshu Wang
INFERENCE IN TWO-SAMPLE SUMMARY-DATA MENDELIAN RANDOMIZATION USING ROBUST ADJUSTED PROFILE SCORE By
使用稳健调整的轮廓分数进行两个样本摘要数据孟德尔随机化的推论
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Qingyuan Zhao;Jingshu Wang;G. Hemani;Jack;Bowden;Dylan S. Small - 通讯作者:
Dylan S. Small
“Impressive Scenery of Shanxi” galas held in Shanxi to promote tourism development
- DOI:
10.1007/s11442-017-1444-y - 发表时间:
2017-10-19 - 期刊:
- 影响因子:5.200
- 作者:
Lufeng Yao;Mi Hao;Jingshu Wang - 通讯作者:
Jingshu Wang
Structural Phase Transition and Compressibility of CaF2 Nanocrystals under High Pressure
CaF2纳米晶高压下的结构相变和压缩性
- DOI:
10.3390/cryst8050199 - 发表时间:
2018-05 - 期刊:
- 影响因子:2.7
- 作者:
Jingshu Wang;Jinghan Yang;Tingjing Hu;Xiangshan Chen;Jihui Lang;Xiaoxin Wu;Junkai Zhang;Haiying Zhao;Jinghai Yang;Qiliang Cui - 通讯作者:
Qiliang Cui
New Diagnosis of Hypertension among Celecoxib and Nonselective NSAID Users: A Population-Based Cohort Study
塞来昔布和非选择性 NSAID 使用者高血压的新诊断:一项基于人群的队列研究
- DOI:
10.1345/aph.1h659 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jingshu Wang;C. Mullins;M. Mamdani;D. Rublee;F. Shaya - 通讯作者:
F. Shaya
Jingshu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingshu Wang', 18)}}的其他基金
CAREER: New Challenges in Statistical Genetics: Mendelian Randomization, Integrated Omics and General Methodology
职业:统计遗传学的新挑战:孟德尔随机化、综合组学和通用方法论
- 批准号:
2238656 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Novel and Rigorous Statistical Learning and Inference for Comparative Effectiveness Research with Complex Data
复杂数据比较有效性研究的新颖而严格的统计学习和推理
- 批准号:
10635323 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Learning-Enabled Autonomous Decision-Support for Blood Pressure Management in Hemorrhage Resuscitation via Population-Informed Statistical Inference
通过基于人群的统计推断,为出血复苏中的血压管理提供学习型自主决策支持
- 批准号:
10727737 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Statistical learning and causal inference in high-dimensional genomics data across multiple information layers
跨多个信息层的高维基因组数据的统计学习和因果推理
- 批准号:
DGECR-2022-00445 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Discovery Launch Supplement
Probability learning and statistical inference in infancy and early childhood
婴儿期和幼儿期的概率学习和统计推断
- 批准号:
RGPIN-2020-04472 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Discovery Grants Program - Individual
Statistical learning and causal inference in high-dimensional genomics data across multiple information layers
跨多个信息层的高维基因组数据的统计学习和因果推理
- 批准号:
RGPIN-2022-03708 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Discovery Grants Program - Individual
Geometric deep learning for likelihood-free statistical inference
用于无似然统计推断的几何深度学习
- 批准号:
2720990 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Studentship
Development of robust statistical and machine learning algorithms for extrapolation in causal inference
开发用于因果推理外推的稳健统计和机器学习算法
- 批准号:
2740759 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Studentship
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Probability learning and statistical inference in infancy and early childhood
婴儿期和幼儿期的概率学习和统计推断
- 批准号:
RGPIN-2020-04472 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




