Topochemical Design of Earth-abundant Materials for Renewable Energy
地球丰富的可再生能源材料的拓扑化学设计
基本信息
- 批准号:2114424
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Part 1: Non-Technical SummaryAccelerated discovery, development and deployment of highly efficient multifunctional sustainable materials is of tremendous importance to meet the fast-growing global societal demand for renewable energy sources. For instance, nearly all small or large electronic devices, ranging from cell phones to pacemakers, we are currently using to improve our daily living conditions are powered using materials that were discovered serendipitously over several decades. Their development and deployment into useful devices took an even longer time. This project, supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, recognizes this longstanding bottleneck, and develops a rational approach to the rapid discovery of low-cost highly efficient copper chalcogenide-based renewable energy materials. The primary goals are to (i) theoretically predict new inorganic earth-abundant materials and their functional properties related to clean energy applications, (ii) computationally investigate possible favorable reaction paths for the synthesis of the predicted phases, and (iii) synthesize and investigate the atomic structure and functional properties of the predicted phases. Specifically, this project, focuses on the discovery of new ternary and quaternary copper metal selenides, CuxMyNzSew, that are based on low-cost Earth-abundant transition metals and/or heavy main group metals M and N, for potential applications in solar or thermoelectric energy conversion technologies. Additionally, the project enables a new level of training for graduate, undergraduate and high school students, including students from underrepresented groups, in predictive functional materials science integrating theory/computation, synthesis, and characterization. Products from this project will be made available to the broader community through publications in scientific journals and online databases. Part 2: Technical SummaryThis project, which is supported by the Solid State and Materials Chemistry Program in the Division of Materials Research, leverages the concepts of phase-homology and phase-analogy within the copper metal selenides (CMSe), CuxMyNzSew, composition space for the design of new crystal structures that encompass key structural features such as tetrahedral metal coordination, and edge-sharing and/or corner-sharing between polyhedra, that are typically found in known highly efficient energy materials. To accelerate the discovery of highly efficient sustainable renewable energy materials, the project integrates the structural design approach with (i) sustainable chemistry through selection of Earth-abundant elements, (ii) prediction of phase stability and favorable reaction paths, (iii) prediction of functional properties (optical, electronic, and thermal), and (iv) validation of the predicted crystal structures and functional properties through synthesis and characterization. The project also investigates, for a given crystal structure type, the role of (i) chemical composition and (ii) intrinsic defects on the observed functional properties of the synthesized new phases through comparison to simulated and measured optical and electronic properties. In addition to accelerating the discovery of efficient and low-cost photovoltaic, thermoelectric, and optoelectronic materials based on Earth-abundant elements, the feedback between theory and experiment will enable the development of predictive tools for the prediction of structural and functional properties of new phases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分:加速高效多功能可持续材料的发现、开发和应用对于满足全球社会对可再生能源快速增长的需求至关重要。例如,我们目前用来改善日常生活条件的几乎所有小型或大型电子设备,从手机到心脏起搏器,都是使用几十年来偶然发现的材料供电的。它们的开发和部署到有用的设备上需要更长的时间。该项目由材料研究部的固态和材料化学计划支持,认识到这一长期存在的瓶颈,并开发了一种合理的方法来快速发现低成本高效的铜硫族化物基可再生能源材料。主要目标是(i)从理论上预测新的无机地球丰富的材料及其与清洁能源应用相关的功能特性,(ii)计算研究合成预测相的可能有利的反应路径,以及(iii)合成和研究预测相的原子结构和功能特性。具体而言,该项目的重点是发现新的三元和四元铜金属硒化物CuxMyNzSew,其基于低成本的地球丰富的过渡金属和/或重主族金属M和N,用于太阳能或热电能转换技术的潜在应用。此外,该项目还为研究生,本科生和高中生,包括来自代表性不足群体的学生,提供了一个新的培训水平,包括理论/计算,合成和表征的预测功能材料科学。该项目的产品将通过在科学期刊和在线数据库上发表的文章提供给更广泛的社区。第二部分:技术摘要该项目由材料研究部的固态和材料化学计划支持,利用铜金属硒化物(CMSe),CuxMyNzSew,组成空间内的相同源性和相类比概念设计新的晶体结构,包括关键的结构特征,如四面体金属配位,以及多面体之间的边共享和/或角共享,通常存在于已知的高效能源材料中。为了加速高效可持续可再生能源材料的发现,该项目将结构设计方法与(i)通过选择地球上丰富的元素进行可持续化学,(ii)预测相稳定性和有利的反应路径,(iii)预测功能特性(光学、电子和热),和(iv)通过合成和表征验证预测的晶体结构和功能性质。该项目还研究了,对于一个给定的晶体结构类型,(i)化学成分和(ii)通过比较模拟和测量的光学和电子性能的合成新相观察到的功能特性的内在缺陷的作用。除了加速发现基于地球丰富元素的高效低成本光伏、热电和光电材料外,理论和实验之间的反馈将使预测工具的开发成为可能,用于预测新相的结构和功能特性。该奖项反映了NSF的法定使命,并被认为值得通过利用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre Poudeu Poudeu其他文献
Pierre Poudeu Poudeu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre Poudeu Poudeu', 18)}}的其他基金
Understanding Electronic and Magnetic Interactions in Complex Mixed Metal Chalcogenides
了解复杂混合金属硫属化物中的电子和磁相互作用
- 批准号:
1561008 - 财政年份:2016
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
CAREER: Understanding and Controlling the Integration of Magnetism into Semiconducting Mixed Metal Chalcogenides
职业:理解和控制磁性融入半导体混合金属硫属化物
- 批准号:
1237550 - 财政年份:2012
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
CAREER: Understanding and Controlling the Integration of Magnetism into Semiconducting Mixed Metal Chalcogenides
职业:理解和控制磁性融入半导体混合金属硫属化物
- 批准号:
0954817 - 财政年份:2010
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
- 批准号:
2419026 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Design of future low Earth orbit small satellites by combining aerodynamic force and solar radiation pressure
气动力与太阳辐射压相结合的未来近地轨道小卫星设计
- 批准号:
22J13958 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Supporting Secondary Students’ Earth Science Knowledge and Engineering Design Skills with Mobile Design Studios
通过移动设计工作室支持中学生地球科学知识和工程设计技能
- 批准号:
2201215 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Elucidating Molecular Design Principles for Copolymer Membranes with Solute-Tailored Selectivity for the Separations of Rare Earth Elements
阐明用于稀土元素分离的具有溶质定制选择性的共聚物膜的分子设计原理
- 批准号:
2147605 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
- 批准号:
2124478 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计和发现
- 批准号:
2124241 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
DMREF: Machine Learning Accelerated Design and Discovery of Rare-earth Phosphates as Next Generation Environmental Barrier Coatings
DMREF:机器学习加速设计和发现稀土磷酸盐作为下一代环境屏障涂层
- 批准号:
2119423 - 财政年份:2021
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CAS: Design and Mechanistic Understanding of Selective Electrocatalysts Based on Earth-Abundant Metal Compounds
CAS:基于地球储量丰富的金属化合物的选择性电催化剂的设计和机理理解
- 批准号:
1955074 - 财政年份:2020
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
CAS: Rational Design of Earth-Abundant Phosphide Hydrogen Evolution Catalysts
CAS:地球储量丰富的磷化物析氢催化剂的合理设计
- 批准号:
1955456 - 财政年份:2020
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Design of Earth-abundant and Robust Water Splitting Electrocatalysts with Autocatalytic Feedback Mechanisms
具有自催化反馈机制的地球丰富且鲁棒的水分解电催化剂的设计
- 批准号:
20K15388 - 财政年份:2020
- 资助金额:
$ 80万 - 项目类别:
Grant-in-Aid for Early-Career Scientists