Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
基本信息
- 批准号:2124478
- 负责人:
- 金额:$ 33.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThe ever-increasing demand for higher computing power and data storage while reducing power consumption and carbon footprint calls for new materials and computing paradigms. This need is accentuated by the fact that after decades of aggressive miniaturization, electronic devices are currently reaching the end of the road for traditional materials as we “run out of atoms”. Two-dimensional (2D) materials, a relatively new class of materials consisting of few-atom-thick sheets, provide a platform to address these challenges. Particularly interesting are 2D transition metal carbides, known as MXenes, composed of two to four atomic layers of transition metals separated by an atomic layer of carbon. MXenes are studied for various applications, including energy storage and generation, blocking electromagnetic waves, and antenna. Despite significant progress, room temperature magnetism, important for quantum computation, computer memories, and spintronics, has remained elusive. With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, Professor Babak Anasori at Indiana University Purdue University Indianapolis and Professor Alejandro Strachan at Purdue University and their research groups will design and fabricate novel 2D MXenes that contain rare-earth elements, such as neodymium and gadolinium, and develop a fundamental understanding of how such elements can be used to control the electronic, magnetic, and optical properties of these materials. Computational modeling is used to guide the experimental design of these new materials and reduce the number of experiments to the most promising candidates. The team hypothesizes that the use of rare-earth elements in MXenes can lead to the first room-temperature 2D magnets. To accelerate innovation, all experimental and theoretical results produced and models developed will be made accessible for the researchers and educators for online computing. The microscopic images of nanomaterials and 2D materials have been used in many nanoart visualizations, such as NanoArtography, to promote STEM. The nanoart images will be integrated into local nanoscience outreach activities, such as Purdue’s NanoDays, to motivate art-enthusiastic children to have a chance to learn about the science and engineering behind nanoart images.TECHNICAL SUMMARY2D transition metal carbide MXenes have become one of the largest 2D material families over the past decade. MXenes have metallic electrical conductivities, are hydrophilic, and capable of intercalating a host of ions and organic molecules, leading to outstanding performance in applications such as energy storage, electromagnetic interference (EMI) shielding, wireless communications, catalysis, and biomedicine. Double-transition metal MXenes are a subfamily of MXenes that enable significant tunability in properties by changing the MXenes transition metal compositions. The research, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, aims to design, synthesize, and characterize a new family of 2D double-transition metal carbides: rare-earth (RE) f-element 2D MXenes opening the possibility of magnetic properties. This will be accomplished via a synergistic combination of theory and experiments. The overarching goal of this project is to develop a fundamental understanding of how different rare-earth elements can be incorporated into MXenes and use it to control the electronic, optical, and magnetic properties of these novel phases. The limiting factor hindering f-element MXenes is their synthesis that requires the design of novel f-element MAX phase precursors among the large compositional space. This project uses high-throughput first principles and thermodynamic calculations to identify stable precursors and their MXenes and use data science tools to guide experimental efforts. Rare-earth f-element MXenes can have radically different properties that have never been measured in regular MXenes and are absent in other 2D and bulk materials. Rare-earth MXenes can have potential applications from EMI shielding, optoelectronics, and catalysis to quantum computation, spintronics, and magnetoelectronics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结对更高计算能力和数据存储的需求不断增长,同时降低功耗和碳足迹,这就需要新的材料和计算模式。这种需求由于以下事实而更加突出:经过几十年的积极小型化,电子设备目前正在走到传统材料的尽头,因为我们“用完了原子”。二维(2D)材料是一种相对较新的材料,由几个原子厚的薄片组成,为解决这些挑战提供了平台。特别令人感兴趣的是二维过渡金属碳化物,称为MXenes,由两到四个过渡金属原子层组成,由碳原子层隔开。MXene被研究用于各种应用,包括能量存储和生成,阻挡电磁波和天线。尽管取得了重大进展,但对量子计算、计算机存储器和自旋电子学很重要的室温磁性仍然难以捉摸。通过这个项目,在材料研究部的固态和材料化学项目的支持下,印第安纳州普渡大学印第安纳波利斯分校的Babak Anasori教授和普渡大学的Alejandro斯特拉坎教授及其研究小组将设计和制造含有稀土元素(如钕和钆)的新型2D MXenes,并对如何使用这些元素来控制这些材料的电子,磁性和光学特性有基本的了解。计算建模用于指导这些新材料的实验设计,并将实验数量减少到最有希望的候选材料。该团队假设在MXene中使用稀土元素可以导致第一个室温2D磁体。为了加速创新,所有产生的实验和理论结果以及开发的模型都将提供给研究人员和教育工作者进行在线计算。纳米材料和2D材料的显微图像已被用于许多纳米艺术可视化,如NanoArtography,以促进STEM。纳米艺术图片将被整合到当地的纳米科学推广活动中,例如普渡大学的NanoDays,以激励热爱艺术的孩子们有机会了解纳米艺术图片背后的科学和工程。技术概述2D过渡金属碳化物MXenes在过去十年中已经成为最大的2D材料家族之一。MXene具有金属导电性,亲水性,能够嵌入大量离子和有机分子,在储能、电磁干扰(EMI)屏蔽、无线通信、催化和生物医学等应用中具有出色的性能。双过渡金属MXene是MXene的一个亚族,其通过改变MXene过渡金属组成来实现性能的显著可调性。该研究由材料研究部的固态和材料化学计划支持,旨在设计,合成和表征一种新的二维双过渡金属碳化物家族:稀土(RE)f元素二维MXenes打开磁性能的可能性。这将通过理论和实验的协同结合来实现。该项目的首要目标是对不同的稀土元素如何掺入MXenes中有一个基本的了解,并利用它来控制这些新相的电子、光学和磁性。阻碍f-元素MXene的限制因素是它们的合成,这需要在大的组成空间中设计新的f-元素MAX相前体。该项目使用高通量第一原理和热力学计算来识别稳定的前体及其MXene,并使用数据科学工具来指导实验工作。稀土f元素MXenes可以具有完全不同的特性,这些特性在常规MXenes中从未测量过,并且在其他2D和块状材料中不存在。稀土MXenes具有潜在的应用,从EMI屏蔽,光电学和催化到量子计算,自旋电子学和磁电子学。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional two-dimensional high-entropy materials
- DOI:10.1038/s43246-023-00341-y
- 发表时间:2023-02-21
- 期刊:
- 影响因子:7.8
- 作者:Nemani, Srinivasa Kartik;Torkamanzadeh, Mohammad;Anasori, Babak
- 通讯作者:Anasori, Babak
Two-dimensional MXenes
- DOI:10.1557/s43577-023-00500-z
- 发表时间:2023-03-10
- 期刊:
- 影响因子:5
- 作者:Anasori, Babak;Naguib, Michael
- 通讯作者:Naguib, Michael
MXenes: The two-dimensional influencers
- DOI:10.1016/j.mtadv.2021.100202
- 发表时间:2021-12-24
- 期刊:
- 影响因子:10
- 作者:Firouzjaei, Mostafa Dadashi;Karimiziarani, Mohammadsepehr;Anasori, Babak
- 通讯作者:Anasori, Babak
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Babak Anasori其他文献
Accelerating 2D materials discovery
加速二维材料发现
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:56.9
- 作者:
Anupma Thakur;Babak Anasori - 通讯作者:
Babak Anasori
Alkali cation stabilization of defects in 2D MXenes at ambient and elevated temperatures
二维 MXenes 中缺陷在环境温度和高温下的碱金属阳离子稳定化
- DOI:
10.1038/s41467-024-50713-2 - 发表时间:
2024-07-28 - 期刊:
- 影响因子:15.700
- 作者:
Brian C. Wyatt;Matthew G. Boebinger;Zachary D. Hood;Shiba Adhikari;Paweł Piotr Michałowski;Srinivasa Kartik Nemani;Murali Gopal Muraleedharan;Annabelle Bedford;Wyatt J. Highland;Paul R. C. Kent;Raymond R. Unocic;Babak Anasori - 通讯作者:
Babak Anasori
Understanding and supporting the needs of early-career materials scientists
- DOI:
10.1557/mrs.2020.292 - 发表时间:
2020-12-10 - 期刊:
- 影响因子:4.900
- 作者:
Thomas G. Folland;Mayra R.S. Castro;Isabel Gessner;Maria A. Philip;Babak Anasori - 通讯作者:
Babak Anasori
Environmentally stable nanoscale superlubricity of multi-layered Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene
- DOI:
10.1016/j.carbon.2023.118284 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:
- 作者:
James Wait;Graham Josephson;Brian C. Wyatt;Babak Anasori;Arzu Çolak - 通讯作者:
Arzu Çolak
Solid-lubrication performance of Tisub3/subCsub2/subTsubemx/em/sub - Effect of tribo-chemistry and exfoliation
tisub3/subcsub2/subtsubemx/em/sub-底层化学和去角质效应的固体润滑性能
- DOI:
10.1016/j.mtnano.2024.100464 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:8.200
- 作者:
Andreas Rosenkranz;Bo Wang;Dario Zambrano;Javier Marqués Henríquez;Jose Y. Aguilar-Hurtado;Edoardo Marquis;Paolo Restuccia;Brian C. Wyatt;M. Clelia Righi;Babak Anasori - 通讯作者:
Babak Anasori
Babak Anasori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Babak Anasori', 18)}}的其他基金
Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
- 批准号:
2419026 - 财政年份:2024
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327011 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
- 批准号:
2301197 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
- 批准号:
2304207 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant