Molecular machinery of the bacterial nucleotide excision repair pathway
细菌核苷酸切除修复途径的分子机制
基本信息
- 批准号:2114509
- 负责人:
- 金额:$ 97.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to understand how cells repair damaged DNA. The process of DNA repair is essential to ensure that the genetic information in the DNA genome remains intact. Inside cells, DNA is continually under assault from multiple sources, including its watery environment, chemicals produced by metabolism, or exposure to external radiation or toxins. To protect the DNA, cells have evolved biochemical processes that patrol the genome, detect damage, and organize responses aimed at restoring the integrity of the DNA. This project focuses on one such repair process, called nucleotide excision repair, in which damaged segments of DNA are removed and replaced with normal DNA. This work will be carried out in bacteria, but because DNA repair mechanisms are similar in higher organisms, including humans, the results should have wide-ranging scientific impact. The project also will have educational impact through programs for engaging undergraduates in research and creative arts and for outreach to public schools in New York City. These educational activities will help fulfill two broad missions: for scientists to attract and retain students in science, technology, engineering, and mathematics (STEM) fields, and for the City College of New York to provide a high-quality and affordable education to children of New York City, immigrants, minorities, and those without economic means. DNA repair is a fundamental process dedicated to maintenance of genetic information, yet many mechanistic details of DNA repair remain obscure. This research will fill gaps in our understanding of one DNA repair pathway, bacterial nucleotide excision repair. Previous research established roles for three proteins, UvrA, UvrB, and UvrC, which function via a series of large and dynamic multi-protein complexes. By applying biochemical, biophysical, and structural approaches, experiments will test structure-based models for three mechanisms: 1) identification of damaged DNA from a background of native DNA, 2) nucleotide binding and hydrolysis, and 3) the molecular choreography of UvrA and UvrB on lesion-containing DNA. The results are expected to provide new insights into how nucleotide excision repair occurs in the context of genome surveillance and repair. Moreover, this knowledge will influence our views of other cellular activities, including DNA replication, gene expression, evolutionary processes and the cellular processes of apoptosis, senescence, and tumorigenesis.This award is co-funded by the Genetic Mechanisms and the Molecular Biophysics programs in the Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是了解细胞如何修复受损的DNA。DNA修复过程对于确保DNA基因组中的遗传信息保持完整至关重要。在细胞内,DNA不断受到多种来源的攻击,包括它的水环境,新陈代谢产生的化学物质,或暴露于外部辐射或毒素。为了保护DNA,细胞进化出生化过程,在基因组中巡逻,检测损伤,并组织旨在恢复DNA完整性的反应。这个项目的重点是这样一个修复过程,称为核苷酸切除修复,其中受损的DNA片段被移除,取而代之的是正常的DNA。这项工作将在细菌中进行,但由于DNA修复机制在包括人类在内的高等生物中是相似的,因此结果应该具有广泛的科学影响。该项目还将通过吸引本科生参与研究和创意艺术的项目,以及向纽约市的公立学校推广,对教育产生影响。这些教育活动将有助于实现两个广泛的使命:科学家吸引和留住科学、技术、工程和数学(STEM)领域的学生,以及纽约城市学院为纽约市的孩子、移民、少数民族和没有经济手段的人提供高质量和负担得起的教育。DNA修复是一个致力于维持遗传信息的基本过程,然而许多DNA修复的机制细节仍然不清楚。这项研究将填补我们对DNA修复途径细菌核苷酸切除修复的理解空白。先前的研究确定了UvrA、UvrB和UvrC三种蛋白的作用,它们通过一系列大的、动态的多蛋白复合物发挥作用。通过应用生化、生物物理和结构方法,实验将测试三种机制的基于结构的模型:1)从天然DNA背景中识别受损DNA, 2)核苷酸结合和水解,以及3)UvrA和UvrB在含损伤DNA上的分子编排。该结果有望为核苷酸切除修复如何在基因组监测和修复的背景下发生提供新的见解。此外,这些知识将影响我们对其他细胞活动的看法,包括DNA复制、基因表达、进化过程和细胞凋亡、衰老和肿瘤发生的细胞过程。该奖项由生物科学理事会分子和细胞生物科学部的遗传机制和分子生物物理学项目共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Jeruzalmi其他文献
A disordered linker in the Polycomb protein Polyhomeotic tunes phase separation and oligomerization
多梳蛋白Polyhomeotic中一个无序连接子调节相分离和寡聚化
- DOI:
10.1016/j.molcel.2025.05.008 - 发表时间:
2025-06-05 - 期刊:
- 影响因子:16.600
- 作者:
Tim M. Gemeinhardt;Roshan M. Regy;Tien M. Phan;Nanu Pal;Jyoti Sharma;Olga Senkovich;Andrea J. Mendiola;Heather J. Ledterman;Amy Henrickson;Daniel Lopes;Utkarsh Kapoor;Ashish Bihani;Djamouna Sihou;Young C. Kim;David Jeruzalmi;Borries Demeler;Chongwoo A. Kim;Jeetain Mittal;Nicole J. Francis - 通讯作者:
Nicole J. Francis
Coordinated Actions of Four ATPase Sites on UvrA<sub>2</sub> during Initiation of Nucleotide Excision Repair
- DOI:
10.1016/j.bpj.2017.11.493 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Brandon C. Case;Silas Hartley;David Jeruzalmi;Manju M. Hingorani - 通讯作者:
Manju M. Hingorani
Mechanistic understanding of UvrA damage detection and lesion hand-off to UvrB in Nucleotide Excision Repair
核苷酸切除修复中 UvrA 损伤检测及损伤转移至 UvrB 的机制理解
- DOI:
10.1038/s41467-025-58670-0 - 发表时间:
2025-04-10 - 期刊:
- 影响因子:15.700
- 作者:
Marianna Genta;Giulia Ferrara;Riccardo Capelli;Diego Rondelli;Sarah Sertic;Martino Bolognesi;Menico Rizzi;Franca Rossi;David Jeruzalmi;Antonio Chaves-Sanjuan;Riccardo Miggiano - 通讯作者:
Riccardo Miggiano
Motors and switches: AAA+ machines within the replisome
马达和开关:复制体中的 AAA+ 机器
- DOI:
10.1038/nrm949 - 发表时间:
2002-11-01 - 期刊:
- 影响因子:90.200
- 作者:
Megan J. Davey;David Jeruzalmi;John Kuriyan;Mike O'Donnell - 通讯作者:
Mike O'Donnell
David Jeruzalmi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Jeruzalmi', 18)}}的其他基金
REU Site: Research and Training in Biochemistry, Biophysics and Biodesign (B3) for Undergraduates
REU 网站:本科生生物化学、生物物理学和生物设计 (B3) 的研究和培训
- 批准号:
1852496 - 财政年份:2020
- 资助金额:
$ 97.99万 - 项目类别:
Continuing Grant
Molecular Mechanisms of Bacterial Helicase Assembly and Activation at a Replication Origin
细菌解旋酶在复制起点组装和激活的分子机制
- 批准号:
1818255 - 财政年份:2018
- 资助金额:
$ 97.99万 - 项目类别:
Standard Grant
REU Site: Research and Training in Biochemistry, Biophysics and Biodesign (B3) for Undergraduates
REU 网站:本科生生物化学、生物物理学和生物设计 (B3) 的研究和培训
- 批准号:
1560384 - 财政年份:2016
- 资助金额:
$ 97.99万 - 项目类别:
Standard Grant
The Bacterial Nucleotide Excision Repair Pathway: Structure and Mechanism
细菌核苷酸切除修复途径:结构与机制
- 批准号:
1330528 - 财政年份:2014
- 资助金额:
$ 97.99万 - 项目类别:
Continuing Grant
Damage Sensing by the Bacterial Nucleotide Excision Repair Pathway
细菌核苷酸切除修复途径的损伤感知
- 批准号:
1260417 - 财政年份:2012
- 资助金额:
$ 97.99万 - 项目类别:
Standard Grant
Damage Sensing by the Bacterial Nucleotide Excision Repair Pathway
细菌核苷酸切除修复途径的损伤感知
- 批准号:
0918161 - 财政年份:2009
- 资助金额:
$ 97.99万 - 项目类别:
Standard Grant
Structural and Functional Analysis of the Initiation of DNA Replication in Bacteria
细菌 DNA 复制起始的结构和功能分析
- 批准号:
0423894 - 财政年份:2004
- 资助金额:
$ 97.99万 - 项目类别:
Continuing Grant
相似国自然基金
Tom1L1在胞内体蛋白分选机制中功能的研究
- 批准号:31171289
- 批准年份:2011
- 资助金额:56.0 万元
- 项目类别:面上项目
相似海外基金
Elucidation of reaction machinery for novel bacterial glycolipid synthases and their applications
新型细菌糖脂合酶反应机制的阐明及其应用
- 批准号:
22H02261 - 财政年份:2022
- 资助金额:
$ 97.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Atomic-level probing of the peptidoglycan biosynthetic machinery in bacterial cell wall biogenesis
细菌细胞壁生物发生中肽聚糖生物合成机制的原子水平探测
- 批准号:
10685947 - 财政年份:2022
- 资助金额:
$ 97.99万 - 项目类别:
Harnessing the acid-base cellular machinery of intercalated cells in the bacterial defense of the kidney
利用嵌入细胞的酸碱细胞机制来防御肾脏的细菌
- 批准号:
10419298 - 财政年份:2022
- 资助金额:
$ 97.99万 - 项目类别:
Harnessing the acid-base cellular machinery of intercalated cells in the bacterial defense of the kidney
利用嵌入细胞的酸碱细胞机制来防御肾脏的细菌
- 批准号:
10706483 - 财政年份:2022
- 资助金额:
$ 97.99万 - 项目类别:
Atomic-level probing of the peptidoglycan biosynthetic machinery in bacterial cell wall biogenesis
细菌细胞壁生物发生中肽聚糖生物合成机制的原子水平探测
- 批准号:
10347044 - 财政年份:2022
- 资助金额:
$ 97.99万 - 项目类别:
Deciphering the bacterial Tad pilus biosynthetic machinery
破译细菌 Tad 菌毛生物合成机制
- 批准号:
557198-2021 - 财政年份:2022
- 资助金额:
$ 97.99万 - 项目类别:
Postdoctoral Fellowships
Creation of a super-resolution map of the bacterial cytokinesis machinery
创建细菌胞质分裂机制的超分辨率图
- 批准号:
DP220101143 - 财政年份:2022
- 资助金额:
$ 97.99万 - 项目类别:
Discovery Projects
Mechanistic investigation of bacterial type 9 secretion system machinery and its involvement in gut metabolism and immunomodulation
9型细菌分泌系统机制及其参与肠道代谢和免疫调节的机制研究
- 批准号:
10667632 - 财政年份:2022
- 资助金额:
$ 97.99万 - 项目类别:
Hijacking the Sec machinery in bacterial warfare
在细菌战中劫持安全部机器
- 批准号:
BB/V001531/1 - 财政年份:2021
- 资助金额:
$ 97.99万 - 项目类别:
Research Grant
Mechanism-based Targeting of the RNA Processing Machinery of SARS-CoV-2
基于机制的 SARS-CoV-2 RNA 加工机制靶向
- 批准号:
10457978 - 财政年份:2021
- 资助金额:
$ 97.99万 - 项目类别: