Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
基本信息
- 批准号:2114514
- 负责人:
- 金额:$ 18.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphics processing units (GPU) have become one of the most promising computing engines in many application domains such as scientific simulations and deep learning. With the massive parallel processing power provided by GPUs, most of the state-of-the-art server and edge systems employ GPUs as the core computing engines for deep-learning model training and inference. As the performance of deep learning models becomes one of the most important delimiters that determines market revenue of the model creators and the convenience of daily lives of model consumers, it is critical to enforce reliable and robust deep-learning computation. This project aims to explore the challenges and opportunities to address the reliability and privacy implications of GPU computing as a deep-learning accelerator and design lightweight protection schemes.The technical aims of this project are divided into three thrusts. The first thrust explores and evaluates possible vulnerabilities and their impact on GPU-based deep-learning computing. The second thrust tackles the vulnerabilities at the compute-unit level by redesigning GPU building blocks, such as new scheduling algorithms and activation acceleration logic. The third thrust explores selective integrity protection mechanisms in communication channels and memory subsystems to transfer data between the CPU and GPU without imposing significant performance overhead. The proposed solutions will mitigate architectural and system vulnerabilities in GPU-based deep learning computing, which will enable the deep learning algorithm developers to focus more on performance improvement and technological advancement, and the consumers to use deep learning-based cognitive products without privacy concerns. The findings of this research will be integrated into undergraduate and graduate courses as well as various outreach activities on K-12 education, and publicly shared through open-source repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形处理单元(GPU)已经成为科学模拟和深度学习等许多应用领域最有前途的计算引擎之一。借助GPU提供的海量并行处理能力,大多数最先进的服务器和边缘系统都采用GPU作为深度学习模型训练和推理的核心计算引擎。随着深度学习模型的性能成为决定模型创建者市场收益和模型消费者日常生活便利性的最重要分界线之一,实施可靠和健壮的深度学习计算至关重要。该项目旨在探索挑战和机遇,以解决GPU计算作为深度学习加速器带来的可靠性和隐私影响,并设计轻量级保护方案。该项目的技术目标分为三个方面。第一个重点是探索和评估可能的漏洞及其对基于GPU的深度学习计算的影响。第二个推力通过重新设计GPU构建块来解决计算单元级别的漏洞,例如新的调度算法和激活加速逻辑。第三个重点是探索通信通道和存储子系统中的选择性完整性保护机制,以在CPU和GPU之间传输数据,而不会带来显著的性能开销。提出的解决方案将缓解基于GPU的深度学习计算的体系结构和系统漏洞,使深度学习算法开发者能够更多地专注于性能提升和技术进步,使消费者能够使用基于深度学习的认知产品,而不会考虑隐私问题。这项研究的结果将被整合到本科生和研究生课程以及关于K-12教育的各种推广活动中,并通过开放源码库公开分享。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyeran Jeon其他文献
Pilot Register File: Energy Efficient Partitioned Register File for GPUs
Pilot 寄存器文件:GPU 的节能分区寄存器文件
- DOI:
10.1109/hpca.2017.47 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Mohammad Abdel;A. Shafaei;Hyeran Jeon;Massoud Pedram;M. Annavaram - 通讯作者:
M. Annavaram
Understanding Scalability of Multi-GPU Systems
了解多 GPU 系统的可扩展性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuan Feng;Hyeran Jeon - 通讯作者:
Hyeran Jeon
Locality-Aware GPU Register File
位置感知 GPU 寄存器文件
- DOI:
10.1109/lca.2019.2959298 - 发表时间:
2019 - 期刊:
- 影响因子:2.3
- 作者:
Hyeran Jeon;Hodjat Asghari Esfeden;N. Abu;Daniel Wong;S. Elango - 通讯作者:
S. Elango
Architectural Vulnerability Modeling and Analysis of Integrated Graphics Processors
集成图形处理器的架构漏洞建模与分析
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hyeran Jeon;Mark Wilkening;Vilas Sridharan;Sudhanva Hurumurthi;G. Loh - 通讯作者:
G. Loh
Improving Energy Efficiency of GPUs through Data Compression and Compressed Execution
通过数据压缩和压缩执行提高 GPU 的能源效率
- DOI:
10.1109/tc.2016.2619348 - 发表时间:
2017 - 期刊:
- 影响因子:3.7
- 作者:
Sangpil Lee;Keunsoo Kim;Gunjae Koo;Hyeran Jeon;M. Annavaram;W. Ro - 通讯作者:
W. Ro
Hyeran Jeon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyeran Jeon', 18)}}的其他基金
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
CAREER: Building Scalable and Reliable Composable Computer Architectures
职业:构建可扩展且可靠的可组合计算机架构
- 批准号:
2341039 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Continuing Grant
NSF Student Travel Support for the 5th Career Workshop for Women and Minorities in Computer Architecture
NSF 学生为第五届计算机架构领域女性和少数族裔职业研讨会提供旅行支持
- 批准号:
1946220 - 财政年份:2019
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Standard Grant














{{item.name}}会员




