Imaging and manipulating inter-particle interactions in van der Waals materials
范德华材料中颗粒间相互作用的成像和操纵
基本信息
- 批准号:2115625
- 负责人:
- 金额:$ 65.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical summaryElectronic and photonic technologies, from modern lasers to computers and solar cells, rely on the efficient transport and conversion of energetic particles such as electrons, excitons (neutral pairs of negative and positive charges), phonons (heat carriers), and photons (light). In almost all materials, these energetic particles co-exist and interact with one another. Unintentional inter-particle interactions are highly detrimental to modern device operation: for example, electron–phonon interactions are the primary efficiency loss mechanism in computer chips and solar panels. Nevertheless, if these interactions can be tailored and beneficially exploited, they can unlock massive efficiency improvements and new functionality in next-generation electronic, photonic and information technologies. In this project, the PI and his group are developing a new ultra-sensitive optical microscope to directly image and manipulate inter-particle interactions in a wide range of materials. The research focuses on two-dimensional semiconductors wherein particle interactions are dramatically enhanced. The goal of the project is to image electron–exciton and exciton–phonon interactions in emerging electronic materials, and to manipulate these interactions using light. This research should lead to new approaches for realizing multi-functional electronic and photonic platforms that can be rapidly reconfigured and that boast extraordinary energy transport properties. Broader goals include facilitating wide adoption of the team’s new imaging approach by academic and industrial laboratories interested in developing materials with tailored energy transport properties by publishing extensive instrument blueprints, as well as posting an outreach video displaying a graduate student performing a full experimental cycle on the microscope to demystify the scientific process on state-of-the-art instrumentation.Technical summaryMany-body interactions between electrons, excitons and phonons in semiconductors can suppress or enhance energy transport by orders of magnitude, and trigger exotic phases like superconductivity. These effects can be particularly strong in low-dimensional van der Waals semiconductors, where reduced volumes, quantum confinement and dielectric confinement all promote strong inter-particle interactions. Although they are known to play a crucial functional role, these interactions occur on extremely short time- and length-scales, making them notoriously difficult to study. The PI and his group are developing ultrasensitive, ultrafast optical scattering microscopes that uniquely track multiple photoexcited energetic particles and their interactions in real space on nanometer scales. This project involves the generalization of ultrasensitive scattering microscopy to reach single-particle sensitivity in a variety of materials over a broad range of temperatures. Using this unique tool, the research team focuses on imaging and manipulating electron–exciton interactions in transition metal dichalcogenides semiconductors and exciton–phonon interactions in superatomic assemblies. In both cases, the project seeks to create multi-functional material platforms that can be reconfigured by perturbing inter-particle interactions through fine-tuning of thermal and dielectric environments, or using external stimuli such as ultrafast light pulses. Through a much-refined understanding of many-body interactions in van der Waals materials, the team seeks to establish new forms of active control over long-range energy transport and conversion in classes of materials that will be key building blocks of next-generation electronic, photonic and information technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要电子和光子技术,从现代激光器到计算机和太阳能电池,都依赖于高能粒子的有效传输和转换,例如电子、激子(负电荷和正电荷的中性对)、声子(热载体)和光子(光)。在几乎所有材料中,这些高能粒子共存并相互作用。无意的粒子间相互作用对现代设备的运行非常不利:例如,电子-声子相互作用是计算机芯片和太阳能电池板的主要效率损失机制。然而,如果这些相互作用能够被定制和有益地利用,它们就可以在下一代电子、光子和信息技术中实现巨大的效率改进和新功能。在这个项目中,首席研究员和他的团队正在开发一种新型超灵敏光学显微镜,可以直接成像和操纵各种材料中的颗粒间相互作用。该研究重点关注二维半导体,其中粒子相互作用显着增强。该项目的目标是对新兴电子材料中的电子-激子和激子-声子相互作用进行成像,并利用光来操纵这些相互作用。这项研究应该带来实现多功能电子和光子平台的新方法,这些平台可以快速重新配置,并具有非凡的能量传输特性。更广泛的目标包括通过发布广泛的仪器蓝图,促进有兴趣开发具有定制能量传输特性的材料的学术和工业实验室广泛采用该团队的新成像方法,以及发布展示研究生在显微镜上进行完整实验周期的外展视频,以揭开最先进仪器的科学过程的神秘面纱。技术摘要电子、激子和声子之间的多体相互作用 半导体中的能量传输可以抑制或增强几个数量级,并引发超导等奇异相。这些效应在低维范德华半导体中尤其强烈,其中体积减小、量子限制和介电限制都促进了强烈的粒子间相互作用。尽管众所周知它们发挥着至关重要的功能作用,但这些相互作用发生在极短的时间和长度范围内,这使得它们很难研究。 PI 和他的团队正在开发超灵敏、超快的光学散射显微镜,能够以纳米尺度独特地跟踪多个光激发高能粒子及其在真实空间中的相互作用。该项目涉及超灵敏散射显微镜的推广,以在各种材料中在较宽的温度范围内达到单粒子灵敏度。使用这种独特的工具,研究团队专注于成像和操纵过渡金属二硫化物半导体中的电子-激子相互作用以及超原子组件中的激子-声子相互作用。在这两种情况下,该项目都寻求创建多功能材料平台,该平台可以通过微调热和介电环境或使用超快光脉冲等外部刺激来扰动颗粒间相互作用来重新配置。通过对范德瓦尔斯材料中多体相互作用的深入了解,该团队寻求建立对远距离能量传输和材料转换的新形式的主动控制,这些材料将成为下一代电子、光子和信息技术的关键组成部分。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milan Delor其他文献
Identifying electron transfer coordinates in donor-bridge-acceptor systems using mode projection analysis
使用模式投影分析识别供体-桥-受体系统中的电子转移坐标
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:16.6
- 作者:
Xunmo Yang;T. Keane;Milan Delor;A. Meijer;J. Weinstein;E. Bittner - 通讯作者:
E. Bittner
Exploring excited states of Pt(II) diimine catecholates for photoinduced charge separation.
探索 Pt(II) 二亚胺儿茶酚盐的激发态用于光致电荷分离。
- DOI:
10.1039/c4dt03466j - 发表时间:
2015 - 期刊:
- 影响因子:4
- 作者:
Paul A Scattergood;Patricia Jesus;H. Adams;Milan Delor;I. Sazanovich;H. Burrows;C. Serpa;J. Weinstein - 通讯作者:
J. Weinstein
Tuning Thermally Activated Delayed Fluorescence through the Solid State Solvation Effect Dannielle McCarthy
通过固态溶剂化效应调节热激活延迟荧光 Dannielle McCarthy
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Milan Delor;R. Noriega;N. Ginsberg - 通讯作者:
N. Ginsberg
Spatiotemporal imaging of nonlinear optics in van der Waals waveguides
范德瓦尔斯波导中非线性光学的时空成像
- DOI:
10.1038/s41565-024-01849-1 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:34.900
- 作者:
Ding Xu;Zhi Hao Peng;Chiara Trovatello;Shan-Wen Cheng;Xinyi Xu;Aaron Sternbach;D. N. Basov;P. James Schuck;Milan Delor - 通讯作者:
Milan Delor
Electron transfer dynamics and excited state branching in a charge-transfer platinum(II) donor-bridge-acceptor assembly.
电荷转移铂 (II) 供体-桥-受体组件中的电子转移动力学和激发态分支。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:4
- 作者:
Paul A Scattergood;Milan Delor;I. Sazanovich;I. Sazanovich;O. V. Bouganov;S. Tikhomirov;A. S. Stasheuski;A. Parker;G. M. Greetham;M. Towrie;E. Davies;A. Meijer;J. Weinstein - 通讯作者:
J. Weinstein
Milan Delor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milan Delor', 18)}}的其他基金
Polariton-Assisted Imaging of Ultrafast Chemical Transformations
超快化学转变的极化子辅助成像
- 批准号:
2203844 - 财政年份:2022
- 资助金额:
$ 65.62万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 65.62万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 65.62万 - 项目类别:
Continuing Grant
Manipulating two-component systems to activate cryptic antibiotic pathways in filamentous actinomycete bacteria
操纵双组分系统激活丝状放线菌中的神秘抗生素途径
- 批准号:
BB/Y005724/1 - 财政年份:2024
- 资助金额:
$ 65.62万 - 项目类别:
Research Grant
Understanding and manipulating how Trypanosoma cruzi infects its triatomine insect hosts
了解和操纵克氏锥虫如何感染其锥蝽昆虫宿主
- 批准号:
BB/Y001125/1 - 财政年份:2024
- 资助金额:
$ 65.62万 - 项目类别:
Research Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 65.62万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 65.62万 - 项目类别:
Standard Grant
Characterising and Manipulating Triplet Interactions
表征和操纵三重态相互作用
- 批准号:
FT230100002 - 财政年份:2024
- 资助金额:
$ 65.62万 - 项目类别:
ARC Future Fellowships
Manipulating sex determination pathways for pest control
操纵性别决定途径以控制害虫
- 批准号:
2869559 - 财政年份:2023
- 资助金额:
$ 65.62万 - 项目类别:
Studentship
TriMED: Measuring, Modeling and Manipulating Excitability and Disease
TriMED:测量、建模和操纵兴奋性和疾病
- 批准号:
10627404 - 财政年份:2023
- 资助金额:
$ 65.62万 - 项目类别:
Manipulating normal estrogen physiology as a therapeutic approach in cancer
操纵正常雌激素生理学作为癌症的治疗方法
- 批准号:
10561945 - 财政年份:2023
- 资助金额:
$ 65.62万 - 项目类别: