MAARCO – Multi-terrain Amphibious ARCtic ExplOrer
MAARCO — 多地形两栖北极探险者
基本信息
- 批准号:2116216
- 负责人:
- 金额:$ 58.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant promotes the progress of science and national prosperity through advancement in the field of amphibious and multi-terrain autonomous robots for exploring Earth’s polar regions. The research makes an important contribution to society by increasing the knowledge and understanding of robotic propulsion and performance on terrain conditions found in the Arctic. As a result, it will help to eliminate the need for human missions in dangerous and uninhabitable areas, and enable scientific data collection in these regions. The current generation of autonomous polar robots have been limited to relatively flat and arid areas such as the central plateau of Antarctica. These robots are poorly suited for exploring the slushy snow, melting ice, wet soil, ice-covered lakes, and floating sea ice found in the rapidly changing Arctic. This project develops the fundamental knowledge to create a new robot that can move seamlessly through diverse Arctic terrains using a single multi-functional propulsion system based on helical drives - rotating cylinders with helix-shaped blades. The new rover will be able to move on snow, melting ice, and wet soil, float and move on water using the hollow drive cylinders for buoyancy, and swim underwater by flooding the cylinders and rotating the helical drives like propellers. In addition to Arctic exploration, this robot could assist humans in search and rescue or disaster response missions. The project involves engaging and encouraging broader participation by underrepresented groups in engineering through outreach and education programs that show students how engineering can be used to improve their lives and the lives of everyone in society. The highly variable and wetter conditions of the Arctic pose challenges to locomotion, energy budgeting, and autonomy that are not met by any current rover technology. To solve this problem, this project addresses the fundamental robotics challenge of understanding how variable surface and terrain conditions couple to the dynamics, energetics, optimal design, and control strategy of a multi-terrain helical drive-based propulsion system. The goals of this research are to: (1) understand the locomotion dynamics and energetics of helical drives operating on terrain conditions found in the Arctic; (2) create and demonstrate an optimization framework capable of determining an optimal rover configuration and control strategy based on mission requirements and environments of operation; and (3) validate and demonstrate locomotion dynamics, control performance, and energetics of an integrated rover system in field conditions. This research unravels the fundamental relationships between control, design, energetics parameters and the desired locomotion of a truly multi-terrain and amphibious rover. The optimization framework along with the locomotion dynamics models will enable engineers and scientists to better understand and design autonomous rovers that may be used for terrestrial or extra-terrestrial exploration.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该基金通过在探索地球极地的两栖和多地形自主机器人领域的进步,促进科学进步和国家繁荣。该研究通过增加对北极地形条件下机器人推进和性能的认识和理解,为社会做出了重要贡献。因此,它将有助于消除在危险和不宜居住地区进行人类任务的需要,并使这些地区能够收集科学数据。目前这一代的自主极地机器人仅限于相对平坦和干旱的地区,如南极洲的中央高原。这些机器人不太适合探索在快速变化的北极地区发现的泥泞的雪、融化的冰、潮湿的土壤、被冰覆盖的湖泊和漂浮的海冰。该项目开发了一种新型机器人的基础知识,该机器人可以使用基于螺旋驱动的单一多功能推进系统(带有螺旋形叶片的旋转圆柱体),在各种北极地形中无缝移动。新的探测车将能够在雪地、融化的冰和潮湿的土壤上移动,利用中空的驱动气缸作为浮力在水面上漂浮和移动,并通过向气缸注水和像螺旋桨一样旋转螺旋驱动器在水下游泳。除了北极探险之外,这个机器人还可以协助人类进行搜索和救援或灾难响应任务。该项目涉及通过外展和教育项目吸引和鼓励代表性不足的群体更广泛地参与工程,向学生展示如何利用工程来改善他们的生活和社会上每个人的生活。北极高度多变和潮湿的环境对移动、能源预算和自主性构成了挑战,这是目前任何探测车技术都无法满足的。为了解决这个问题,本项目解决了机器人技术的基本挑战,即理解可变的表面和地形条件如何与多地形螺旋驱动推进系统的动力学、能量学、优化设计和控制策略相结合。本研究的目标是:(1)了解在北极地形条件下运行的螺旋驱动器的运动动力学和能量学;(2)创建并演示一个优化框架,该框架能够根据任务要求和运行环境确定最优的漫游车配置和控制策略;(3)在野外条件下验证和演示集成漫游车系统的运动动力学、控制性能和能量学。本研究揭示了控制、设计、能量学参数与真正的多地形两栖漫游车期望运动之间的基本关系。优化框架以及运动动力学模型将使工程师和科学家能够更好地理解和设计可用于陆地或地外探索的自主漫游者。该项目由跨部门机器人基础研究项目支持,由工程(ENG)和计算机与信息科学与工程(CISE)联合管理和资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Neural Network Architecture on Topography Estimation From Satellite Imagery for Multi-Terrain Autonomous Vehicle Path Planning and Control
- DOI:10.1109/most57249.2023.00021
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Ryan Lynch;Sumedh Beknalkar;Jack Lynch;A. Mazzoleni;M. Bryant
- 通讯作者:Ryan Lynch;Sumedh Beknalkar;Jack Lynch;A. Mazzoleni;M. Bryant
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andre Mazzoleni其他文献
Technoeconomic optimization of coaxial hydrokinetic turbines
- DOI:
10.1016/j.renene.2024.122041 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Mehedi Hassan;Matthew Bryant;Andre Mazzoleni;Kenneth Granlund - 通讯作者:
Kenneth Granlund
Andre Mazzoleni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
- 批准号:
2594635 - 财政年份:2025
- 资助金额:
$ 58.35万 - 项目类别:
Studentship
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
$ 58.35万 - 项目类别:
EU-Funded
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
- 批准号:
10097846 - 财政年份:2024
- 资助金额:
$ 58.35万 - 项目类别:
Collaborative R&D
Multi-component interventions to reducing unhealthy diets and physical inactivity among adolescents and youth in sub-Saharan Africa (Generation H)
采取多方干预措施减少撒哈拉以南非洲青少年的不健康饮食和缺乏身体活动(H 代)
- 批准号:
10106976 - 财政年份:2024
- 资助金额:
$ 58.35万 - 项目类别:
EU-Funded
An Integrated Life-course Approach for Person-centred Solutions and Care for Ageing with Multi-morbidity in the European Regions - STAGE; Stay Healthy Through Ageing
欧洲地区以人为本的解决方案和针对多种疾病的老龄化护理的综合生命全程方法 - STAGE;
- 批准号:
10112787 - 财政年份:2024
- 资助金额:
$ 58.35万 - 项目类别:
EU-Funded
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
$ 58.35万 - 项目类别:
Discovery Projects
Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
- 批准号:
EP/Y021479/1 - 财政年份:2024
- 资助金额:
$ 58.35万 - 项目类别:
Research Grant
Phase Averaged Deferred Correction for Multi-Timescale Systems
多时间尺度系统的相位平均延迟校正
- 批准号:
EP/Y032624/1 - 财政年份:2024
- 资助金额:
$ 58.35万 - 项目类别:
Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 58.35万 - 项目类别:
Research Grant
MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
- 批准号:
NE/Z000130/1 - 财政年份:2024
- 资助金额:
$ 58.35万 - 项目类别:
Research Grant














{{item.name}}会员




