Determining Bulk and Surface Degradation Mechanisms in Potassium Ion Batteries

确定钾离子电池的本体和表面降解机制

基本信息

  • 批准号:
    2116728
  • 负责人:
  • 金额:
    $ 42.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical summary:The development of new types of batteries that do not rely on lithium will enable cheaper and more widespread adoption of renewable energy. Potassium is a particularly attractive option to replace lithium because it has high natural abundance and desirable electrochemical properties. However, simply swapping Li atoms for K leads to severe performance decline in potassium ion battery (KIB) analogues. With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, Prof. Marbella and her research group gather fundamental information required to develop KIBs. They use nuclear magnetic resonance (NMR) spectroscopy to study each component of the battery at the molecular-level, including the electrode, the electrolyte, and the electrode/electrolyte interface. Specifically, this research program tests the hypothesis that the larger atomic size of K compared to Li leads to unique degradation mechanisms that ultimately contribute to battery failure. The research project aims to identify the relationship between bulk and interfacial degradation modes and electrochemical behavior in KIBs. This provides insight that generate pathways to redesign materials that are optimal for KIB technologies. Broader impacts of this work include research opportunities and workshops created specifically for underrepresented undergraduate women interested in pursuing graduate education. This research project is also closely integrated with educational activities that engage underrepresented and underprivileged students in energy storage research projects at the undergraduate and high school level through partnerships with Barnard College (all women liberal arts college affiliated with Columbia University) and Ellis Preparatory High School for recent immigrants in the Bronx, respectively.Technical summary:Identifying and parsing the complex interplay between bulk and surface degradation modes in beyond-Li ion batteries is critical to realizing cost-effective solutions for the widespread adoption of electrochemical energy storage. This project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, leverages the high chemical and elemental specificity of nuclear magnetic resonance (NMR) to identify the chemical mechanisms underpinning failure in potentially high capacity tin phosphide anodes for potassium ion batteries (KIBs). The large atomic size of K generates highly disordered and mechanically unstable structures during potassiation of tin phosphides that are susceptible to a loss of electrical connectivity and parasitic side reactions during electrochemical cycling. In the bulk, phase transformations that occur upon K insertion/removal are difficult to measure with traditional materials characterization tools (e.g., diffraction) that require long-range order for structural assignment. In contrast, NMR can directly probe local P and Sn environments in the anodes to identify specific compounds that facilitate reversible K alloying reactions. Further, the volume expansion associated with K insertion exposes fresh surface for electrolyte consumption, presenting the need for strategies that can decipher electrolyte reactivity. NMR is used to describe, at the molecular-level, electrolyte solvation structures that generate unique electrolyte decomposition products. NMR analyses allows the creation of some of the first molecular-level descriptors of bulk phase transformations and interfacial reactivity in KIBs. This research plan is closely integrated with educational activities that engage underrepresented and underprivileged students in energy storage research projects at the undergraduate and high school level through partnerships with Barnard College (all women liberal arts college affiliated with Columbia University) and Ellis Preparatory High School for recent immigrants in the Bronx, respectively.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结:不依赖锂的新型电池的开发将使可再生能源更便宜,更广泛地采用。钾是替代锂的特别有吸引力的选择,因为它具有高天然丰度和理想的电化学性质。然而,简单地将Li原子交换为K导致钾离子电池(KIB)类似物的性能严重下降。 通过这个项目,在NSF材料研究部的固态和材料化学计划的支持下,Marbella教授和她的研究小组收集了开发KIB所需的基本信息。他们使用核磁共振(NMR)光谱在分子水平上研究电池的每个组件,包括电极,电解质和电极/电解质界面。具体来说,该研究项目测试了一个假设,即与Li相比,K的原子尺寸较大,导致独特的降解机制,最终导致电池失效。该研究项目旨在确定本体和界面降解模式与KIBs电化学行为之间的关系。这提供了深入的见解,产生的途径,重新设计材料是最佳的KIB技术。这项工作的更广泛影响包括专门为有兴趣接受研究生教育的人数不足的女大学生创造研究机会和举办讲习班。该研究项目还与教育活动紧密结合,通过与巴纳德学院的合作,在本科和高中阶段吸引代表性不足和弱势学生参与储能研究项目。(所有女子文理学院附属于哥伦比亚大学)和埃利斯预备高中的新移民在布朗克斯,分别。技术总结:识别和解析超锂离子电池中本体和表面降解模式之间的复杂相互作用对于实现广泛采用电化学储能的成本效益解决方案至关重要。该项目由NSF材料研究部的固态和材料化学计划支持,利用核磁共振(NMR)的高化学和元素特异性来确定潜在高容量磷化锡阳极失效的化学机制。K的大原子尺寸在磷化锡的钾化过程中产生高度无序和机械不稳定的结构,其在电化学循环过程中容易失去电连接性和寄生副反应。在本体中,在K插入/移除时发生的相变难以用传统的材料表征工具(例如,衍射),需要长程有序结构分配。相反,NMR可以直接探测阳极中的局部P和Sn环境,以识别促进可逆K合金化反应的特定化合物。此外,与K插入相关的体积膨胀暴露了新鲜的表面用于电解质消耗,从而需要可以破译电解质反应性的策略。NMR用于在分子水平上描述产生独特电解质分解产物的电解质溶剂化结构。NMR分析允许创建一些第一个分子水平的描述符的体相转化和界面反应性KIBs。该研究计划与教育活动紧密结合,通过与巴纳德学院的合作,让代表性不足和贫困的学生参与本科和高中阶段的储能研究项目。(所有女子文理学院附属于哥伦比亚大学)和埃利斯预备高中为最近的移民在布朗克斯,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Potassium Fluoride and Carbonate Lead to Cell Failure in Potassium-Ion Batteries
  • DOI:
    10.1021/acsami.1c15174
  • 发表时间:
    2021-11-17
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Ells, Andrew W.;May, Richard;Marbella, Lauren E.
  • 通讯作者:
    Marbella, Lauren E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lauren Marbella其他文献

Lauren Marbella的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lauren Marbella', 18)}}的其他基金

CAREER: NMR of the Solid Electrolyte Interphase on Li Metal Anodes
职业:锂金属阳极上固体电解质界面的核磁共振
  • 批准号:
    2045262
  • 财政年份:
    2021
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Dynamic Nuclear Polarization (DNP) Nuclear Magnetic Resonance (NMR) System
MRI:动态核极化 (DNP) 核磁共振 (NMR) 系统的采集
  • 批准号:
    2018756
  • 财政年份:
    2020
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant

相似国自然基金

整合单细胞RNA测序―bulk RNA测序―病理组学探究乳腺癌焦亡相关免疫景观
  • 批准号:
    JCZRYB202500607
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于scDEAL模型融合单细胞与bulk组学数据识别肾透明细胞癌TKI 耐药标志物
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于scRNA-seq和bulk数据解析肝脏肿瘤微环境及肝转移机制
  • 批准号:
    2024Y9414
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于Bulk反卷积影像基因组学的癌症非侵入性诊断算法研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于Bulk与单细胞多组学数据集成的癌症亚型识别方法研究
  • 批准号:
    62301021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单细胞与Bulk数据融合的启动子状态识别及其与疾病关联分析方法研究
  • 批准号:
    62302342
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于bulk和单细胞转录组挖掘水稻lncRNA参与调控非生物胁迫响应机制的研究
  • 批准号:
    32261133526
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于注意力机制融合单细胞测序与bulk组学数据识别肾透明细胞癌ICI敏感标志物
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
体硅下薄膜(TUB,Thinfilm Under Bulk)复合结构成型机理及其高性能器件研究
  • 批准号:
    61674160
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
提高基于Bulk-Micromegas结构的快中子探测器探测效率和位置分辨的方法的研究
  • 批准号:
    11275087
  • 批准年份:
    2012
  • 资助金额:
    87.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Characterisation of Carbon Deposits using Modern Surface Science and Bulk property Analytical Techniques.
使用现代表面科学和本体特性分析技术表征碳沉积物。
  • 批准号:
    2887330
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Studentship
CAS: Linking bulk composition and structure to the dynamic active surface in OER
CAS:将本体成分和结构与 OER 中的动态活性表面联系起来
  • 批准号:
    2426120
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant
Elucidation and control of mutual dynamics of bulk flow-gas-liquid surface tension gradient associated with high-speed elongation behavior
与高速伸长行为相关的散装流-气-液表面张力梯度的相互动力学的阐明和控制
  • 批准号:
    23K13251
  • 财政年份:
    2023
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Detailed bulk composition analysis of extrasolar objects accreted at the surface of white dwarf stars
白矮星表面吸积的太阳系外物体的详细整体成分分析
  • 批准号:
    RGPIN-2020-05019
  • 财政年份:
    2022
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Discovery Grants Program - Individual
Surface and Bulk chemistry relevant to atmospheric aerosol systems that impact the air quality, climate and health
与影响空气质量、气候和健康的大气气溶胶系统相关的表面和本体化学
  • 批准号:
    RGPIN-2022-03571
  • 财政年份:
    2022
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Discovery Grants Program - Individual
CAS: Linking bulk composition and structure to the dynamic active surface in OER
CAS:将本体成分和结构与 OER 中的动态活性表面联系起来
  • 批准号:
    2151049
  • 财政年份:
    2022
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant
Ultrasonic Vibration Assisted Surface Texturing of Bulk Metallic Glasses for Enhancing Tribological Performance
超声波振动辅助块体金属玻璃的表面纹理以增强摩擦学性能
  • 批准号:
    RGPIN-2018-04911
  • 财政年份:
    2022
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Discovery Grants Program - Individual
Detailed bulk composition analysis of extrasolar objects accreted at the surface of white dwarf stars
白矮星表面吸积的太阳系外物体的详细整体成分分析
  • 批准号:
    RGPIN-2020-05019
  • 财政年份:
    2021
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Discovery Grants Program - Individual
Effect of Surface-Bulk Partitioning on the Oxidation of Aqueous Dicarboxylic Acid Aerosols
表面本体分配对水二羧酸气溶胶氧化的影响
  • 批准号:
    2106823
  • 财政年份:
    2021
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Standard Grant
Surface and Bulk chemistry of metals in atmospherically-relevant systems that impact climate and health
影响气候和健康的大气相关系统中金属的表面和本体化学
  • 批准号:
    RGPIN-2016-06113
  • 财政年份:
    2021
  • 资助金额:
    $ 42.3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了