Collaborative Research: DMREF: Microstructure by Design: Integrating Grain Growth Experiments, Data Analytics, Simulation, and Theory
合作研究:DMREF:微观结构设计:整合晶粒生长实验、数据分析、模拟和理论
基本信息
- 批准号:2118206
- 负责人:
- 金额:$ 72.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Most technologically useful materials are polycrystalline microstructures composed of a myriad of small monocrystalline grains delimited by grain boundaries. An understanding of the evolution of grain boundaries and associated grain growth (coarsening) is essential in determining the properties of materials across multiple scales. Despite tremendous progress in formulating microstructural models, however, current descriptions do not fully account for various grain growth mechanisms, detailed grain topologies and the effects of different time scales on microstructural evolution. As a result, conventional theories have limited predictive capability. The goal of the project is to develop a predictive theory of grain growth in polycrystalline materials through the construction of novel, closely integrated data-driven numerical simulation and mathematical modeling combined with data analytics, analysis, and a set of critical experiments. This interdisciplinary project, requiring the complementary expertise of applied mathematicians and materials scientists, is firmly aligned with the Materials Genome Initiative. The new knowledge and tools that will emerge from the project will have a profound impact on the performance and reliability of polycrystalline materials used in many technologically useful systems and structures, thereby expediting advanced materials development and deployment. Predictive computational algorithms and data will be made available and accessible to other researchers. For the training of the next-generation materials workforce, in addition to mentoring of graduate and undergraduate students, the PIs (from Columbia University, Illinois Institute of Technology, Lehigh University and University of Utah) will participate in outreach activities and will continue to work towards increasing diversity and broadening participation within STEM.Grain growth is a very complex process and may be viewed as the anisotropic evolution of a large metastable network. One of the main thrusts of the project will be to uncover possible stochastic processes that define the evolution of various statistical measures of grain growth, discover relations among them, and establish links to materials properties. Results from structure-preserving numerical simulations alongside critical sets of experiments and new experimental data will be invaluable in navigating the modeling and analysis. The project will also create and employ specific data analysis techniques for the study of dynamic evolution of grains in experimental and computational systems with the goal of validating and further refining the microstructural models. This component of the project, will lead to a) the development of new materials informatics methods, b) innovative stochastic differential equations/differential equations models of grain growth, c) new mathematical and numerical analysis techniques for coarsening systems, as well as d) improved computational tools. In turn, the results of combined data analytics, modeling and analysis will be used to guide the design of subsequent experiments. Experimentally, grain growth will be examined in prototypical metallic thin films (Pd, Ni, Cr, Fe). As most elemental metals and many metallic alloys have cubic structures, the proposed studies will have broad applicability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大多数技术上有用的材料是由无数由晶界界定的小单晶晶粒组成的多晶微结构。理解晶界的演化和相关的晶粒生长(粗化)对于确定多尺度材料的性质至关重要。尽管在制定微观结构模型方面取得了巨大进展,但是,目前的描述并没有充分考虑到各种晶粒生长机制,详细的晶粒拓扑结构和不同时间尺度对微观结构演变的影响。因此,传统理论的预测能力有限。该项目的目标是通过构建新颖的、紧密集成的数据驱动的数值模拟和数学建模,结合数据分析、分析和一系列关键实验,开发多晶材料中晶粒生长的预测理论。这个跨学科的项目,需要应用数学家和材料科学家的互补专业知识,是坚定地与材料基因组计划。该项目产生的新知识和工具将对许多技术上有用的系统和结构中使用的多晶材料的性能和可靠性产生深远影响,从而加快先进材料的开发和部署。 预测计算算法和数据将提供给其他研究人员。为了培训下一代材料工作人员,除了指导研究生和本科生,PI(来自哥伦比亚大学、伊利诺伊理工学院、利哈伊大学和犹他州大学)将参与外展活动,并将继续努力增加多样性和扩大STEM内的参与。晶粒生长是一个非常复杂的过程,可以被视为一个晶体的各向异性演化。大型亚稳态网络该项目的主要目标之一将是揭示可能的随机过程,这些过程定义了晶粒生长的各种统计测量的演变,发现它们之间的关系,并建立与材料特性的联系。结构保持数值模拟的结果以及关键的实验集和新的实验数据将在导航建模和分析中发挥非常重要的作用。该项目还将创建和采用特定的数据分析技术,用于研究实验和计算系统中晶粒的动态演变,目的是验证和进一步完善微观结构模型。该项目的这一组成部分将导致a)开发新的材料信息学方法,B)创新的随机微分方程/晶粒生长微分方程模型,c)粗化系统的新数学和数值分析技术,以及d)改进的计算工具。 反过来,综合数据分析、建模和分析的结果将用于指导后续实验的设计。在实验上,将在原型金属薄膜(Pd,Ni,Cr,Fe)中检查晶粒生长。由于大多数元素金属和许多金属合金具有立方结构,因此拟议的研究将具有广泛的适用性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Relative grain boundary energies from triple junction geometry: Limitations to assuming the Herring condition in nanocrystalline thin films
三结几何形状的相对晶界能量:假设纳米晶薄膜中赫林条件的局限性
- DOI:10.1016/j.actamat.2022.118476
- 发表时间:2023
- 期刊:
- 影响因子:9.4
- 作者:Patrick, Matthew J.;Rohrer, Gregory S.;Chirayutthanasak, Ooraphan;Ratanaphan, Sutatch;Homer, Eric R.;Hart, Gus L. W.;Epshteyn, Yekaterina;Barmak, Katayun
- 通讯作者:Barmak, Katayun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katayun Barmak其他文献
Superconductivity in 5.0° twisted bilayer WSe2
5.0°扭曲双层 WSe2 中的超导性
- DOI:
10.1038/s41586-024-08381-1 - 发表时间:
2025-01-22 - 期刊:
- 影响因子:48.500
- 作者:
Yinjie Guo;Jordan Pack;Joshua Swann;Luke Holtzman;Matthew Cothrine;Kenji Watanabe;Takashi Taniguchi;David G. Mandrus;Katayun Barmak;James Hone;Andrew J. Millis;Abhay Pasupathy;Cory R. Dean - 通讯作者:
Cory R. Dean
Robust supermoiré pattern in large-angle single-twist bilayers
大角度单扭曲双层膜中的稳健超级莫尔图案
- DOI:
10.1038/s41567-025-02914-9 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:18.400
- 作者:
Yanxing Li;Chuqiao Shi;Fan Zhang;Xiaohui Liu;Yuan Xue;Viet-Anh Ha;Qiang Gao;Chengye Dong;Yu-Chuan Lin;Luke N. Holtzman;Nicolás Morales-Durán;Hyunsue Kim;Yi Jiang;Madisen Holbrook;James Hone;Katayun Barmak;Joshua A. Robinson;Xiaoqin Li;Feliciano Giustino;Eslam Khalaf;Yimo Han;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Negative differential transconductance in MoSesub2/sub/h-BN/WSesub2/sub vertical structure
MoS₂/h - BN/WS₂垂直结构中的负微分跨导
- DOI:
10.1016/j.apmt.2025.102725 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.900
- 作者:
Hai Yen Le Thi;Inayat Uddin;Nhat Anh Nguyen Phan;Muhammad Atif Khan;Chi-Te Liang;Chiashain Chuang;Changgu Lee;Luke N. Holtzman;Katayun Barmak;Kenji Watanabe;Takashi Taniguchi;James Hone;Young Duck Kim;Won Jong Yoo;Gil-Ho Kim - 通讯作者:
Gil-Ho Kim
Barmak, Calvert, Speck, and Tung to Chair 1999 MRS Spring Meeting
- DOI:
10.1557/s0883769400030645 - 发表时间:
1998-06-01 - 期刊:
- 影响因子:4.900
- 作者:
Katayun Barmak;Paul Calvert;James S. Speck;Raymond T. Tung - 通讯作者:
Raymond T. Tung
Efficient light upconversion via resonant exciton-exciton annihilation of dark excitons in few-layer transition metal dichalcogenides
通过少层过渡金属二硫属化物中暗激子的共振激子-激子湮灭实现高效光致发光转换
- DOI:
10.1038/s41467-025-57991-4 - 发表时间:
2025-03-26 - 期刊:
- 影响因子:15.700
- 作者:
Yi-Hsun Chen;Ping-Yuan Lo;Kyle W. Boschen;Chih-En Hsu;Yung-Ning Hsu;Luke N. Holtzman;Guan-Hao Peng;Chun-Jui Huang;Madisen Holbrook;Wei-Hua Wang;Katayun Barmak;James Hone;Pawel Hawrylak;Hung-Chung Hsueh;Jeffrey A. Davis;Shun-Jen Cheng;Michael S. Fuhrer;Shao-Yu Chen - 通讯作者:
Shao-Yu Chen
Katayun Barmak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katayun Barmak', 18)}}的其他基金
Collaborative Research: Towards a Predictive Theory of Microstructure Evolution in Polycrystalline Materials
合作研究:多晶材料微观结构演化的预测理论
- 批准号:
1905492 - 财政年份:2019
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant
E2CDA: Type I: Collaborative Research: Interconnects Beyond Cu
E2CDA:I 类:协作研究:铜以外的互连
- 批准号:
1740270 - 财政年份:2017
- 资助金额:
$ 72.46万 - 项目类别:
Continuing Grant
Collaborative Research: Towards Rare-Earth-Free Advanced Permanent Magnets - High-Anisotropy L10 Materials
合作研究:迈向无稀土先进永磁体 - 高各向异性 L10 材料
- 批准号:
1259736 - 财政年份:2012
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant
Collaborative Research: Towards Rare-Earth-Free Advanced Permanent Magnets - High-Anisotropy L10 Materials
合作研究:迈向无稀土先进永磁体 - 高各向异性 L10 材料
- 批准号:
1129313 - 财政年份:2011
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant
The A1 to L1_0 Transformation in FePt Films with Ternary Alloying Additions
添加三元合金的 FePt 薄膜中 A1 到 L1_0 的转变
- 批准号:
0804765 - 财政年份:2008
- 资助金额:
$ 72.46万 - 项目类别:
Continuing Grant
The A1 to L1o Transformation in FePt, CoPt and Related Ternary Alloy Films
FePt、CoPt 及相关三元合金薄膜中 A1 到 L1o 的转变
- 批准号:
0506374 - 财政年份:2005
- 资助金额:
$ 72.46万 - 项目类别:
Continuing Grant
Evolution of Grain Structure in Thin Film Reactions
薄膜反应中晶粒结构的演变
- 批准号:
9996315 - 财政年份:1999
- 资助金额:
$ 72.46万 - 项目类别:
Continuing Grant
Evolution of Grain Structure in Thin Film Reactions
薄膜反应中晶粒结构的演变
- 批准号:
9713439 - 财政年份:1997
- 资助金额:
$ 72.46万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 72.46万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 72.46万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 72.46万 - 项目类别:
Standard Grant