Collaborative Research: Common Error Diagnostics and Support in Short-answer Math Questions

合作研究:简答数学问题中的常见错误诊断和支持

基本信息

  • 批准号:
    2118706
  • 负责人:
  • 金额:
    $ 37.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

One important way to help struggling students improve in math is to deliver personalized support that addresses their specific weaknesses. Many math questions have common wrong answers (CWAs) that correspond to specific errors students make during their answering process, caused by misconceptions or a general lack of knowledge on certain math skills. To date, CWA identification and support remains a labor-intensive process at a limited scale because it requires significant effort by teachers and/or domain experts. In this project, the investigators will develop artificial intelligence (AI)-based mechanisms that can automatically identify CWAs from students’ answers to short-answer math questions and diagnose errors. Once these errors are identified, the investigators will enlist the help of teachers to design feedback and support mechanisms in various formats such as textual feedback messages and short videos. In turn, the investigators will integrate these diagnosis and effective support mechanisms into a teacher interface to support them in either classrooms or online learning environments. Overall, this project has the potential to lead to i) better understanding of CWAs in math questions and the underlying errors and ii) effective CWA support mechanisms for each error type. The project will be grounded in ASSISTments, a free web-based learning platform, therefore directly benefiting the 500,000 US students and 20,000 teachers using it and potentially an even larger number of students and teachers through the dissemination of research findings. This project consists of four main research activities. First, the investigators will leverage math expression embedding methods to learn the representations of student errors by clustering CWAs across multiple questions in the latent math expression embedding vector space. These learned representations will enable the automated diagnosis of student errors in real time. Second, the investigators will develop new knowledge tracing algorithms that go beyond typical correctness analysis and analyze the full answer each student submits to each question. These algorithms will enable the automated tracking of students’ progress in correcting their errors. Third, the investigators will crowdsource multiple types of student support from teachers and integrate both student error diagnostics and support mechanisms into the existing ASSISTments teacher interface. This interface will provide feedback to teachers on which students are struggling in real time and recommend a support, which the teacher can either adopt and customize or reject and create their own support instead. Fourth, the investigators will conduct a randomized controlled trial to evaluate the effectiveness of each support mechanism in helping students correct their errors. This experiment will identify which support mechanisms are most effective at helping students correct each error type and improving learning outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
帮助苦苦挣扎的学生提高数学水平的一个重要方法是提供个性化的支持,以解决他们的具体弱点。许多数学问题都有常见的错误答案(CWA),这与学生在回答过程中犯的特定错误相对应,这些错误是由误解或对某些数学技能的普遍缺乏知识造成的。到目前为止,CWA的识别和支持仍然是一个劳动密集型的过程,在有限的规模,因为它需要教师和/或领域专家的显着努力。在这个项目中,研究人员将开发基于人工智能(AI)的机制,可以从学生对简答数学问题的回答中自动识别CWA并诊断错误。一旦发现这些错误,调查人员将寻求教师的帮助,以文本反馈信息和短视频等各种形式设计反馈和支持机制。反过来,研究人员将这些诊断和有效的支持机制整合到教师界面中,以支持他们在课堂或在线学习环境中。总的来说,这个项目有可能导致i)更好地理解数学问题中的CWA和潜在的错误,ii)针对每种错误类型的有效CWA支持机制。该项目将以ASSISTments为基础,这是一个免费的基于网络的学习平台,因此直接受益于50万美国学生和2万名教师使用它,并可能通过传播研究成果使更多的学生和教师受益。该项目包括四项主要研究活动。首先,研究人员将利用数学表达式嵌入方法,通过在潜在数学表达式嵌入向量空间中跨多个问题聚类CWA来学习学生错误的表示。这些学习到的表示将使自动诊断学生的错误在真实的时间。其次,研究人员将开发新的知识追踪算法,超越典型的正确性分析,并分析每个学生提交的每个问题的完整答案。这些算法将能够自动跟踪学生在纠正错误方面的进展。第三,研究人员将从教师那里众包多种类型的学生支持,并将学生错误诊断和支持机制整合到现有的ASSISTments教师界面中。该界面将向教师提供关于学生在真实的时间中挣扎的反馈,并推荐支持,教师可以采用和定制或拒绝并创建他们自己的支持。第四,研究人员将进行随机对照试验,以评估每种支持机制在帮助学生纠正错误方面的有效性。该实验将确定哪些支持机制在帮助学生纠正每种错误类型和提高学习成果方面最有效。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic Short Math Answer Grading via In-context Meta-learning
通过上下文元学习自动对简短数学答案进行评分
Scientific Formula Retrieval via Tree Embeddings
Automated Scoring for Reading Comprehension via In-context BERT Tuning
通过上下文 BERT 调优对阅读理解进行自动评分
Math Word Problem Generation with Mathematical Consistency and Problem Context Constraints
  • DOI:
    10.18653/v1/2021.emnlp-main.484
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zichao Wang;Andrew S. Lan;Richard Baraniuk
  • 通讯作者:
    Zichao Wang;Andrew S. Lan;Richard Baraniuk
Algebra Error Classification with Large Language Models
  • DOI:
    10.48550/arxiv.2305.06163
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hunter McNichols;Mengxue Zhang;Andrew S. Lan
  • 通讯作者:
    Hunter McNichols;Mengxue Zhang;Andrew S. Lan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiting Lan其他文献

Shiting Lan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiting Lan', 18)}}的其他基金

CAREER: Generative Item, Response, and Feedback Models in Assessment and Learning
职业:评估和学习中的生成项目、响应和反馈模型
  • 批准号:
    2237676
  • 财政年份:
    2023
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant
Support for Doctoral Students from U.S. Universities to Attend the 12th International Conference on Educational Data Mining (EDM 2019)
支持美国高校博士生参加第十二届教育数据挖掘国际会议(EDM 2019)
  • 批准号:
    1930635
  • 财政年份:
    2019
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Student Affect Detection and Intervention with Teachers in the Loop
合作研究:学生情绪检测和与教师的干预
  • 批准号:
    1917713
  • 财政年份:
    2019
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: MTM1: Microbial Genomic, Transcriptomic, and Survival Response to Common Built Environment Lighting
合作研究:MTM1:微生物基因组、转录组和对常见建筑环境照明的生存反应
  • 批准号:
    2401220
  • 财政年份:
    2023
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Common Pool Resource Theory as a Scalable Framework for Catalyzing Stakeholder-Driven Solutions to the Freshwater Salinization Syndrome
合作研究:GCR:公共池资源理论作为催化利益相关者驱动的淡水盐化综合症解决方案的可扩展框架
  • 批准号:
    2312326
  • 财政年份:
    2023
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Continuing Grant
LIA: Collaborative Research: Biogeography, Population Genetics, and Ecology of two Common Species of Fleshy Red Algae in McMurdo Sound
LIA:合作研究:麦克默多海峡两种常见肉质红藻的生物地理学、群体遗传学和生态学
  • 批准号:
    2037598
  • 财政年份:
    2022
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Extending Tree-Ring Based Reconstructions of Atlantic Gulf Basin Hydroclimate over the Common Era Using Old-Growth Sinker Wood
合作研究:P2C2——使用古老的沉降木扩展大西洋湾盆地水文气候的树轮重建
  • 批准号:
    2202857
  • 财政年份:
    2022
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Keystone molecules and estuarine foodwebs: chemical defense and a novel biosynthetic pathway in a common mudflat mollusc
合作研究:RUI:关键分子和河口食物网:常见泥滩软体动物的化学防御和新型生物合成途径
  • 批准号:
    2127112
  • 财政年份:
    2022
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant
LIA: Collaborative Research: Biogeography, Population Genetics, and Ecology of two Common Species of Fleshy Red Algae in McMurdo Sound
LIA:合作研究:麦克默多海峡两种常见肉质红藻的生物地理学、群体遗传学和生态学
  • 批准号:
    2037670
  • 财政年份:
    2022
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Keystone molecules and estuarine foodwebs: chemical defense and a novel biosynthetic pathway in a common mudflat mollusc
合作研究:RUI:关键分子和河口食物网:常见泥滩软体动物的化学防御和新型生物合成途径
  • 批准号:
    2127111
  • 财政年份:
    2022
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Keystone molecules and estuarine foodwebs: chemical defense and a novel biosynthetic pathway in a common mudflat mollusc
合作研究:RUI:关键分子和河口食物网:常见泥滩软体动物的化学防御和新型生物合成途径
  • 批准号:
    2127110
  • 财政年份:
    2022
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Tropical Cyclone Variability in the Western North Pacific Over the Common Era
合作研究:西北太平洋历年热带气旋变化
  • 批准号:
    2216418
  • 财政年份:
    2022
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: P2C2--Extending Tree-Ring Based Reconstructions of Atlantic Gulf Basin Hydroclimate over the Common Era Using Old-Growth Sinker Wood
合作研究:P2C2——使用古老的沉降木扩展大西洋湾盆地水文气候的树轮重建
  • 批准号:
    2202858
  • 财政年份:
    2022
  • 资助金额:
    $ 37.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了