Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care

合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施

基本信息

  • 批准号:
    2118953
  • 负责人:
  • 金额:
    $ 92.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

This project investigates a completely new cross-disciplinary concept of “Computational Screening and Surveillance (CSS)” that utilizes edge learning to detect early indicators of diseases, and monitor health changes in both individuals and populations. CSS analyzes and interprets continuous and heterogeneous physical and physiologic sensing-data streams of human subjects to produce real-time information, knowledge, and insights about their health status. The project’s novelty is a data-driven paradigm that revolutionizes the understanding, prediction, intervention, treatment, and management of acute/infectious, chronic physical and psychological diseases. The project’s impacts are enormous social and economic benefits to individuals, organizations, and the healthcare system: early detection, preemptive intervention and management can lead to greatly improved quality of care, and huge savings for multiple diseases each costing hundreds of billions of dollars every year.The investigators design, develop and evaluate principles and solutions for CSS enabled by extreme-scale edge learning spanning four dimensions: data modalities, health conditions and data patterns, Artificial Intelligence/Machine Learning (AI/ML) algorithms and models, and individuals/populations. The design is guided by four principles: exploit scale and heterogeneity, design for uncertainty, privacy as a first-class citizen, and faults and attacks as a norm. The investigators will 1) design AI/ML algorithms for learning data patterns and correlations for diverse health conditions in both individuals and populations at extreme scales; 2) quantify theoretical bounds on the tradeoffs between security, privacy protection, and learning accuracy in order to protect against various attacks on data and models at both the edge and cloud; 3) develop programming abstractions for automated exploration of competing AI/ML methods under uncertainty, and system mechanisms to protect stream processing integrity against sensitive data disclosure and faulty/malicious analytics; and 4) devise neural architectures and accelerators for computation efficiency at the constrained edge, data efficiency using limited training sets, and human efficiency utilizing AutoML.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了一个全新的跨学科概念“计算筛查和监测(CSS)”,该概念利用边缘学习来检测疾病的早期指标,并监测个人和人群的健康变化。CSS分析和解释人类受试者的连续和异构的物理和生理传感数据流,以产生有关其健康状况的实时信息,知识和见解。该项目的新奇在于数据驱动的范式,它彻底改变了对急性/传染性、慢性生理和心理疾病的理解、预测、干预、治疗和管理。该项目的影响是巨大的社会和经济效益,为个人,组织和医疗保健系统:早期发现,先发制人的干预和管理可以大大提高护理质量,并节省大量的费用,每年花费数千亿美元的多种疾病。研究人员设计,开发和评估CSS的原则和解决方案,通过跨四个维度的极端规模边缘学习实现:数据模式、健康状况和数据模式、人工智能/机器学习(AI/ML)算法和模型以及个人/群体。该设计遵循四个原则:利用规模和异质性,设计不确定性,隐私作为一等公民,错误和攻击作为一种规范。研究人员将:1)设计AI/ML算法,用于在极端规模下学习个人和人群中各种健康状况的数据模式和相关性; 2)量化安全性、隐私保护和学习准确性之间权衡的理论界限,以防止对边缘和云的数据和模型的各种攻击; 3)开发编程抽象,用于在不确定性下自动探索竞争性AI/ML方法,以及保护流处理完整性免受敏感数据泄露和错误/恶意分析的系统机制;以及4)设计神经体系结构和加速器,用于约束边缘处的计算效率,使用有限训练集的数据效率,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subspace Differential Privacy
Obtaining Approximately Optimal and Diverse Solutions via Dispersion
通过分散获得近似最优且多样化的解
Clustering of Trajectories using Non-Parametric Conformal DBSCAN Algorithm
DATA ANALYTICS FOR HEALTH-RELEVANT EVENTS DETECTION BASED UPON LONGITUDINAL FITBIT HEART RATE DATA
  • DOI:
    10.1093/geroni/igad104.2810
  • 发表时间:
    2023-12-21
  • 期刊:
  • 影响因子:
    7
  • 作者:
  • 通讯作者:
Differentially Private Range Query on Shortest Paths
  • DOI:
    10.1007/978-3-031-38906-1_23
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chengyuan Deng;Jie Ying Gao;Jalaj Upadhyay;Chen Wang
  • 通讯作者:
    Chengyuan Deng;Jie Ying Gao;Jalaj Upadhyay;Chen Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Gao其他文献

Few-shot learning for short text classification
短文本分类的少样本学习
  • DOI:
    10.1007/s11042-018-5772-4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Leiming Yan;Yuhui Zheng;Jie Gao
  • 通讯作者:
    Jie Gao
Mucin2 is Required for Probiotic Agents-Mediated Blocking Effects on Meningitic E. coli-Induced Pathogenicities.
Mucin2 是益生菌介导的对脑膜炎大肠杆菌诱导的致病性的阻断作用所必需的。
  • DOI:
    10.4014/jmb.1502.02010
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingyi Yu;Xiaolong He;Puthiyakunnon S;Liang Peng;Yan Li;Li-Sha Wu;Wen Ling Peng;Ya Zhang;Jie Gao;Yao-Yuan Zhang;Swapna Boddu;Ming Long;Hong Cao;Sheng-He Huang
  • 通讯作者:
    Sheng-He Huang
The Existence of Homoclinic Solutions for Second Order Differential Equation
  • DOI:
    10.4028/www.scientific.net/amm.195-196.728
  • 发表时间:
    2012-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Gao
  • 通讯作者:
    Jie Gao
Study on photodissociation and photoconversion characteristics of CS2 in O2/O3 environment using real-time conversion products obtained by UV-DOAS
利用UV-DOAS获得的实时转换产物研究CS2在O2/O3环境中的光解离和光转换特性
Nonylphenol ethoxylates biodegradation increases estrogenicity of textile wastewater in biological treatment systems
壬基酚聚氧乙烯醚生物降解增加生物处理系统中纺织废水的雌激素性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Xiwei He;Zhaodong Qi;Jie Gao;Kailong Huang;Mei Li;Dirk Springael;Xu-xiang Zhang
  • 通讯作者:
    Xu-xiang Zhang

Jie Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Gao', 18)}}的其他基金

CRCNS Research Proposal: Modeling Human Brain Development as a Dynamic Multi-Scale Network Optimization Process
CRCNS 研究提案:将人脑发育建模为动态多尺度网络优化过程
  • 批准号:
    2207440
  • 财政年份:
    2022
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Promoting Social Learning Amid Interference in the Age of Social Media
合作研究:AF:小:在社交媒体时代的干扰下促进社交学习
  • 批准号:
    2208663
  • 财政年份:
    2022
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Standard Grant
Collaborative Research: Infrared Chiral Metasurface Enhanced Vibrational Circular Dichroism Biomolecule Sensing
合作研究:红外手性超表面增强振动圆二色性生物分子传感
  • 批准号:
    2230069
  • 财政年份:
    2022
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Standard Grant
Collaborative Research: 2D ferroelectric nonlinear metasurface holograms
合作研究:二维铁电非线性超表面全息图
  • 批准号:
    2226875
  • 财政年份:
    2022
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Standard Grant
CAREER: Flat Singular Optics: Generation and Detection of Optical Vortex Beams with Plasmonic Metasurfaces in Linear and Nonlinear Regimes
职业:平面奇异光学:在线性和非线性体系中使用等离激元超表面生成和检测光学涡旋光束
  • 批准号:
    2204163
  • 财政年份:
    2021
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Standard Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
  • 批准号:
    2126582
  • 财政年份:
    2021
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: From Brains to Society: Neural Underpinnings of Collective Behaviors Via Massive Data and Experiments
合作研究:从大脑到社会:通过大量数据和实验研究集体行为的神经基础
  • 批准号:
    1939459
  • 财政年份:
    2019
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
CAREER: Flat Singular Optics: Generation and Detection of Optical Vortex Beams with Plasmonic Metasurfaces in Linear and Nonlinear Regimes
职业:平面奇异光学:在线性和非线性体系中使用等离激元超表面生成和检测光学涡旋光束
  • 批准号:
    1653032
  • 财政年份:
    2017
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Theory and Algorithms for Discrete Curvatures on Network Data from Human Mobility and Monitoring
合作研究:ATD:人体移动和监测网络数据离散曲率的理论和算法
  • 批准号:
    1737812
  • 财政年份:
    2017
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Standard Grant
NeTS: Small: Geometric and Topological Analysis on Trajectory Sensing: Collection, Classification and Anonymization
NeTS:小型:轨迹感知的几何和拓扑分析:收集、分类和匿名化
  • 批准号:
    1618391
  • 财政年份:
    2016
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 92.36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了