Further Advancing the Northeast Combinatorics Network
进一步推进东北组合网络
基本信息
- 批准号:2119137
- 负责人:
- 金额:$ 3.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Northeast Combinatorics Network (NCN) will host several events including Spring and Fall Discrete Math Day (DMD) conferences and a Summer Combo conference as well as a Virtual Combinatorics Colloquium series in each year of the three-year project. The Spring 2018 DMD will be hosted at UMass Amherst, https://sites.google.com/view/umass-dms/dmdspring19, and universities in the region are being given the opportunity to host the remaining five DMD meetings. This project aims to further cultivate and enhance a network of students, post-doctoral researchers, faculty and industry mathematicians spread across the institutions in New England and New York working in the area of combinatorics (discrete mathematics), which is a thriving and rapidly advancing mathematical discipline. Motivated by applications to computer science, data science, cybersecurity, bioinformatics and more, combinatorialists have developed powerful new tools in recent years and have identified fundamental mathematical problems that, if solved, will have far-reaching impact in these applied areas. Connections to other areas of mathematics abound as well. This project puts particular emphasis on service to students and faculty, particularly women and members of other groups underrepresented in STEM disciplines. The project's design particularly targets students and faculty at small, more remote institutions, a cohort that has made significant contributions to the field. With three one-day meetings per year as anchor activities, the project envisions an intentional infrastructure that facilitates ongoing interactions among researchers throughout the year. The PIs, together with the rest of the NCN leadership (meeting hosts and Steering Committee) will advance a set of activities that, while low in cost, provide key resources to researchers in the region. These activities include: a central NCN website to improve communication and collaboration, the Virtual Combinatorics Colloquium series that allows remote viewing and interaction, a series of "New Directions" presentations of accessible problem areas to foster undergraduate research and also engage early career faculty, and an on-line discussion forum that extends collaborative interactions that may start at any one of the regular meetings. These activities, taken as a whole, will advance fundamental science, foster connections to applied areas, and enhance outreach beyond the traditional research university community. The NCN website is https://sites.google.com/view/northeastcombinatoricsnetwork/home.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
东北组合学网络(NCN)将主办几项活动,包括春季和秋季离散数学日(DMD)会议和夏季组合学会议,以及在为期三年的项目中每年举行的虚拟组合学研讨会系列。2018年春季数字媒体会议将在马萨诸塞州阿默斯特大学和https://sites.google.com/view/umass-dms/dmdspring19,大学举行,该地区的大学将有机会主办剩下的五次数字媒体会议。该项目旨在进一步培养和加强在组合学(离散数学)领域工作的学生、博士后研究人员、教师和行业数学家网络,这些学生、博士后研究人员、教师和行业数学家分布在新英格兰和纽约的机构中,组合数学是一门蓬勃发展和快速发展的数学学科。在计算机科学、数据科学、网络安全、生物信息学等应用的推动下,组合学家近年来开发了强大的新工具,并确定了基本的数学问题,如果解决这些问题,将对这些应用领域产生深远影响。与其他数学领域的联系也比比皆是。该项目特别强调为学生和教职员工提供服务,特别是妇女和在STEM学科中任职人数不足的其他群体成员。该项目的设计特别针对小型、更偏远机构的学生和教职员工,这一群体对该领域做出了重大贡献。该项目每年举行三次为期一天的会议,作为主要活动,该项目设想了一个有目的的基础设施,促进研究人员全年持续的互动。PIS将与NCN领导层(会议主办方和指导委员会)的其他成员一起推进一系列活动,这些活动虽然成本较低,但为该地区的研究人员提供了关键资源。这些活动包括:一个改善沟通和协作的中央NCN网站,允许远程观看和互动的虚拟组合讨论会系列,一系列关于可访问的问题领域的“新方向”演讲,以促进本科生研究和吸引早期职业教师,以及一个在线讨论论坛,该论坛扩展了可能在任何一次定期会议上开始的协作互动。作为一个整体,这些活动将推进基础科学,促进与应用领域的联系,并加强传统研究型大学社区以外的联系。NCN网站IS https://sites.google.com/view/northeastcombinatoricsnetwork/home.This奖反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julianna Tymoczko其他文献
Dimensions of splines of degree two
二次样条尺寸
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shaheen Nazir;Anne Schilling;Julianna Tymoczko - 通讯作者:
Julianna Tymoczko
Equivariant structure constants for ordinary and weighted projective space
普通和加权射影空间的等变结构常数
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Julianna Tymoczko - 通讯作者:
Julianna Tymoczko
Hessenberg varieties are not pure dimensional
Hessenberg 品种不是纯维度的
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Julianna Tymoczko - 通讯作者:
Julianna Tymoczko
For instance one set of these representatives follows : ∗ ∗ 1 0 1 0 0 0 0 ∗ 0 1 0 1 0 0
例如,一组代表如下: * * 1 0 1 0 0 0 0 * 0 1 0 1 0 0
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Julianna Tymoczko - 通讯作者:
Julianna Tymoczko
Generalized splines on graphs with two labels and polynomial splines on cycles
具有两个标签的图上的广义样条线和循环上的多项式样条线
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.7
- 作者:
Portia Anderson;Jacob P. Matherne;Julianna Tymoczko - 通讯作者:
Julianna Tymoczko
Julianna Tymoczko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julianna Tymoczko', 18)}}的其他基金
Combinatorial Group Actions and Applications to Geometry, Knot Theory, and Representation Theory
组合群动作及其在几何、纽结理论和表示论中的应用
- 批准号:
2054513 - 财政年份:2021
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
Further Advancing the Northeast Combinatorics Network
进一步推进东北组合网络
- 批准号:
1853455 - 财政年份:2019
- 资助金额:
$ 3.9万 - 项目类别:
Continuing Grant
Combinatorial Representation Theory from Knot Theory and Algebraic Geometry
来自结理论和代数几何的组合表示理论
- 批准号:
1800773 - 财政年份:2018
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
Combinatorial algebraic geometry: Modern Schubert calculus and generalized splines
组合代数几何:现代舒伯特微积分和广义样条
- 批准号:
1362855 - 财政年份:2014
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
International summer school and research conference on Schubert calculus
舒伯特微积分国际暑期学校和研究会议
- 批准号:
1205283 - 财政年份:2012
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
Combinatorial Methods in Geometric Representation Theory
几何表示理论中的组合方法
- 批准号:
1248171 - 财政年份:2012
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
Combinatorial Methods in Geometric Representation Theory
几何表示理论中的组合方法
- 批准号:
1101170 - 财政年份:2011
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
相似海外基金
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
- 批准号:
2412406 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Cooperative Agreement
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
- 批准号:
DP240100968 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Discovery Projects
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
- 批准号:
24K17324 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
- 批准号:
AH/Z000017/1 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Research Grant
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
- 批准号:
ES/Z502789/1 - 财政年份:2024
- 资助金额:
$ 3.9万 - 项目类别:
Research Grant