ERASE-PFAS: Collaborative Research: Nickel and Palladium Single-Atom Electrocatalysts for Selective Capture and Destruction of PFAS in Complex Water Matrices

ERASE-PFAS:合作研究:镍和钯单原子电催化剂用于选择性捕获和破坏复杂水基质中的 PFAS

基本信息

  • 批准号:
    2120418
  • 负责人:
  • 金额:
    $ 27.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Per- and polyfluorinated alkyl substances (PFAS) are a group of chemicals that have been widely used for decades. As additives in numerous consumer products, PFAS have many desirable properties, including exceptional chemical resistance. However, this property makes them very difficult to remove from water using current treatment processes. The chemical stability also makes PFAS persist in the environment, causing significant concerns for human and ecological health. One promising way to treat PFAS in water to benign end products is electrochemical oxidation. Scientists and engineers have been exploring various strategies to enhance performance, including employing nanotechnology enabled catalysts. However, expensive metals are often required in this approach, and selective destruction of PFAS in the water that contains various other organic compounds has been challenging. The proposed research addresses these drawbacks through the development of next-generation catalysts that can selectively bind with and destroy PFAS even when the water contains many other compounds. This goal will be pursued by manipulating palladium (Pd) and nickel (Ni) catalysts to be atomically dispersed, a process known as ‘single-atom catalysis’ (SAC). SAC is the theoretical limit of downsizing materials, and represents the state-of-science advancement beyond nanotechnology. The outcomes of this research project will include development of a laboratory-scale prototype SAC electrochemical reactor tested with PFAS contaminated water. Results will be disseminated through reports, scientific journals, conferences, and lectures. This project will train graduate and undergraduate students at two universities to perform interdisciplinary research under a highly collaborative environment. High school students will be recruited via summer research internship and outreach courses, increasing scientific literacy and developing the Nation’s STEM workforce. The overarching objective of the proposed project is to develop an innovative electrocatalytic process that can oxidatively destroy PFAS in complex water matrices to benign end products. This project is one of the first studies to explore SAC – the theoretical limit of material downsizing – as the target electrocatalyst architecture to achieve highly selective and efficient anodic destruction of PFAS. The focus of this research is on Pd and Ni catalysts based on their proven performance for PFAS degradation at nano-scale. The SAC configuration has numerous advantages over existing catalysis technology. SAC allows tunable metal-ligand interactions and coordination environments that are essential for i) selective binding of the metal catalytic centers to functional groups of PFAS, and ii) direct electron transfer from PFAS to the anode. In addition, extremely low consumption of raw materials and low-cost synthesis procedures for SAC alleviate or possibly eliminate cost concerns when using noble metals like Pd. Finally, SACs are likely much more stable than metallic clusters, an important consideration for reactor implementation. The research is based on the underlying hypothesis that SAC architecture eliminates metal-metal interactions that are inherent in metallic, crystalline nanoclusters, resulting in PFAS degradation kinetics enhanced to the maximum extent possible. This hypothesis will be tested through characterization of the synthesized materials using state-of-the-science EXASF, XANES, HAADF-STEM, and in-situ FTIR techniques. Reaction products will be identified using advanced chemical analytical techniques to correlate material property and PFAS degradation pathways. The successful completion of this project will advance understanding of SAC synthesis, SAC-driven electrocatalysis, and establish new strategies for PFAS destruction. The collaborative team consisting of two research groups at two institutions with complimentary specialties will provide unique multidisciplinary, collaborative training opportunities to participating graduate and undergraduate students. Summer courses focusing on fluorine chemistry and electrochemistry will be developed for high school students and teachers. The project team is committed to recruiting underrepresented students for all outreach and training activities to diversify the Nation’s STEM workforce and promote an inclusive culture for research and learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类和多氟饮酒物质(PFA)是数十年来广泛使用的一组化学物质。作为众多消费产品中的添加剂,PFA具有许多理想的特性,包括出色的耐化学性能。但是,这种属性使它们很难使用当前的治疗过程从水中取出。化学稳定性还使PFA在环境中持续存在,引起了对人类和生态健康的重大关注。在水中处理PFA的一种有希望的方法是电化学氧化。科学家和工程师已经探索了各种策略,以提高性能,包括采用纳米技术启用催化剂。但是,这种方法通常需要昂贵的金属,并且在水中的PFA中有选择性破坏包含其他各种有机化合物的水受到挑战。拟议的研究通过开发下一代催化剂来解决这些缺点,这些催化剂即使水含有许多其他化合物,这些催化剂也可以选择性地结合并破坏PFA。通过操纵钯(PD)和镍(NI)催化剂被原子分散,这一过程将被称为“单原子催化”(SAC)来实现这一目标。 SAC是缩减材料的理论极限,代表了纳米技术以外的科学进步。该研究项目的结果将包括开发使用PFAS污染水测试的实验室原型SAC电化学反应器。结果将通过报告,科学期刊,会议和讲座来传播。该项目将培训两所大学的毕业生和本科生,以在高度协作的环境下进行跨学科研究。高中生将通过夏季研究实习和外展课程招募,从而提高科学素养并发展国家的STEM劳动力。拟议项目的总体目标是开发一种创新的电催化过程,该过程可以选择破坏复杂水材中的PFA,以良性最终产品。该项目是探索SAC的最早研究之一 - 材料缩减的理论限制 - 作为目标电催化剂结构,以实现PFA的高度选择性和有效的阳极破坏。这项研究的重点是基于PD和NI催化剂,其基于其在纳米级的PFAS降解的可靠性。与现有催化剂技术相比,SAC配置具有许多优势。 SAC允许可调金属配体相互作用和对i)金属催化中心与PFAS官能团的选择性结合,以及ii)直接电子从PFAS到阳极的直接转移。此外,在使用PD等贵金属时,原材料的消耗极低,用于SAC的低成本合成程序可以减轻或可能消除成本问题。最后,SAC可能比金属簇要稳定得多,这是反应堆实施的重要考虑因素。该研究基于以下基本假设:SAC结构消除了金属晶体纳米簇固有的金属金属相互作用,从而最大程度地增强了PFAS降解动力学。该假设将通过使用最先进的EXASF,XANES,HAADF-STEM和原位FTIR技术来表征合成材料来检验。将使用先进的化学分析技术来鉴定反应产物,以将材料特性和PFAS降解途径相关联。该项目的成功完成将提高人们对SAC合成,SAC驱动的电催化,并为PFAS破坏建立新的策略。由两个机构的两个研究小组组成的合作团队将提供独特的多学科,协作培训机会,以参与研究生和本科生。将针对高中生和老师开发关注氟化学和电化学的夏季课程。该项目团队致力于招募人数不足的学生进行所有宣传和培训活动,以使美国的STEM劳动力多样化,并促进一种包容性的研究和学习文化。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的审查标准来通过评估来通过评估来获得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaehong Kim其他文献

Development of rate-compatible structured LDPC CODEC algorithms and hardware IP
速率兼容的结构化LDPC CODEC算法和硬件IP的开发
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. McLaughlin;Jaehong Kim;Demijan Klinc;Woonhaing Hur;A. Ramamoorthy;Sunghwan Kim
  • 通讯作者:
    Sunghwan Kim
Simple on-line dead-time compensation scheme based on disturbance voltage observer
基于扰动电压观测器的简单在线死区补偿方案
Effect of clay content on well-graded sands due to infiltration
渗透作用下粘土含量对级配砂的影响
  • DOI:
    10.1016/j.enggeo.2008.08.002
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Sangseom Jeong;Jaehong Kim;Kyu
  • 通讯作者:
    Kyu
The Design of Rate-Compatible Structured Low-Density Parity-Check Codes
速率兼容结构化低密度奇偶校验码的设计
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jaehong Kim
  • 通讯作者:
    Jaehong Kim
Inefficiency of the Subgame Optimal Entry Regulation

Jaehong Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaehong Kim', 18)}}的其他基金

I-Corps: Catalytic membrane to eliminate organic pollutants in industrial wastewater
I-Corps:消除工业废水中有机污染物的催化膜
  • 批准号:
    2330630
  • 财政年份:
    2023
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Environmental Materials Beyond and Below Nanoscale: Palladium Single Atom
超越和低于纳米尺度的环境材料:钯单原子
  • 批准号:
    1955793
  • 财政年份:
    2020
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Quantitative Insights on Environmental Implications of Functionalizing Fullerenes
功能化富勒烯对环境影响的定量见解
  • 批准号:
    1439048
  • 财政年份:
    2014
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
CBET: Upconversion Enhanced Visible Light Sensitization of Semiconductor Photocatalysts for Environmental Application
CBET:用于环境应用的半导体光催化剂的上转换增强可见光敏化
  • 批准号:
    1335934
  • 财政年份:
    2013
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Quantitative Insights on Environmental Implications of Functionalizing Fullerenes
功能化富勒烯对环境影响的定量见解
  • 批准号:
    1235916
  • 财政年份:
    2012
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Converting Visible Light to UVC: Lanthanide Upconversion Nano-Phosphors for Light-Activated Biocidal Surface Development
将可见光转换为 UVC:用于光激活杀菌表面开发的镧系元素上转换纳米荧光粉
  • 批准号:
    1033866
  • 财政年份:
    2011
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing Novel Surface Immobilized Photocatalysts Using Functionalized C60
合作研究:使用功能化 C60 开发新型表面固定光催化剂
  • 批准号:
    0932872
  • 财政年份:
    2009
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant

相似国自然基金

饮用水膜处理系统服役中PFAS释放规律及去除机理研究
  • 批准号:
    52370137
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
污泥深度脱水中PFAS转化调控与EPS指纹的响应关联机制
  • 批准号:
    42307520
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铁泥碳、硫缺陷调控构建内电场驱动催化体系修复地下水PFAS的界面作用机制
  • 批准号:
    42307065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
去除水中新PFAS的高效选择性氟化-季铵COFs材料的构建及吸附机理研究
  • 批准号:
    22366033
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
单原子Pd@MXene穿透式电极电催化还原PFAS性能与界面活性位点调控原理
  • 批准号:
    52370084
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ERASE-PFAS: Hydrothermal Treatment as a Strategy for Simultaneous PFAS Destruction and Recovery of Energy and Nutrients from Wastewater Residual Solids
合作研究:ERASE-PFAS:水热处理作为同时破坏 PFAS 并从废水残留固体中回收能量和养分的策略
  • 批准号:
    2207191
  • 财政年份:
    2022
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Thermal Regeneration of PFAS-laden Granular Activated Carbon presents an Opportunity to Break the Forever PFAS Cycle
合作研究:ERASE-PFAS:充满 PFAS 的颗粒活性炭的热再生提供了打破永久 PFAS 循环的机会
  • 批准号:
    2219832
  • 财政年份:
    2022
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Stabilization of Per- and Polyfluorinated Substances in Sewage Sludge Intended for Land-application
合作研究:ERASE-PFAS:用于土地应用的污水污泥中全氟和多氟物质的稳定化
  • 批准号:
    2225596
  • 财政年份:
    2022
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: Stabilization of Per- and Polyfluorinated Substances in Sewage Sludge Intended for Land-application
合作研究:ERASE-PFAS:用于土地应用的污水污泥中全氟和多氟物质的稳定化
  • 批准号:
    2225535
  • 财政年份:
    2022
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Collaborative Research: ERASE-PFAS: A "concentrate-and-destroy" technology for treating per- and polyfluoroalkyl substances using a new class of adsorptive photocatalysts
合作研究:ERASE-PFAS:一种使用新型吸附光催化剂处理全氟烷基和多氟烷基物质的“浓缩和破坏”技术
  • 批准号:
    2244985
  • 财政年份:
    2022
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了