Environmental Materials Beyond and Below Nanoscale: Palladium Single Atom
超越和低于纳米尺度的环境材料:钯单原子
基本信息
- 批准号:1955793
- 负责人:
- 金额:$ 38.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanotechnology has been the main driver of scientific advances in catalytic materials and processes over the past few decades. Unique physicochemical and electronic properties emerge as materials are engineered at the nanoscale. This project explores what would happen if the same material were engineered to be even smaller at the sub-nanoscale, even down to the ‘single atom'. Single-atom catalysts are the theoretical limit of material downsizing and represent a frontier of materials research today. Single-atom catalysts are synthesized by tightly anchoring individual noble metal or transition metal atoms onto a support material. This configuration allows every atom to be available for catalytic reaction, unlike nanoparticles in which atoms are inevitably buried inside a cluster of atoms. Single-atom catalysts are is particularly attractive for costly noble metal catalysts, such as palladium, that are often sought in reductive pollutant degradation processes for environmental remediation. This research project seeks to examine how palladium can be controlled at the atomic scale to best exploit the material’s catalytic properties in an application relevant to water treatment. Successful completion of this project will enable more cost-effective and more sustainable environmental remediation solutions. The project will leverage an outreach program that the investigator has established to engage local high school students in STEM research. The investigator will also offer classes to high school teachers. The overarching goal of the project is to evaluate how palladium catalysts behave differently when downsized from nanoparticles to the single atom limit. Palladium single-atom catalyst material properties will be correlated with synthetic parameters by employing various advanced characterization techniques such as high energy X-ray absorption and scanning transmission electron microscopy. Other properties, including atomic dispersion, local coordination environment, and oxidation state of the active metal site, will be further correlated to catalytic performance for the reductive removal of toxic halogenated organic compounds and nitrate (and potentially other oxyanions, such as nitrite, bromate, chromate, and perchlorate) that pose significant environmental and human health concerns. In addition, the PI will investigate how palladium single-atom catalysts behave differently from their nanoparticle counterparts over long-term use and under a complex water matrix to evaluate their environmental fate. Graduate and undergraduate students participating in this project will gain interdisciplinary knowledge, particularly at the interface of materials science, advanced spectroscopy, and environmental engineering. The project will leverage an outreach program that the PI has established to engage local high school students in STEM research. The PI will also offer classes to high school teachers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年里,纳米技术一直是催化材料和工艺科学进步的主要驱动力。随着材料在纳米尺度上进行工程设计,独特的物理化学和电子性能应运而生。这个项目探索了如果同样的材料在亚纳米尺度上被设计得更小,甚至到“单个原子”会发生什么。单原子催化剂是材料小型化的理论极限,代表了当今材料研究的前沿。单原子催化剂是通过将单个贵金属或过渡金属原子紧密地锚定在载体材料上而合成的。这种结构允许每个原子都可用于催化反应,而不像纳米粒子那样,原子不可避免地被埋在一簇原子中。单原子催化剂对于昂贵的贵金属催化剂特别有吸引力,例如钯,这些催化剂经常被用于环境修复的还原污染物降解过程中。这项研究项目旨在研究如何在原子尺度上控制钯,以最好地利用该材料在与水处理相关的应用中的催化性能。该项目的成功完成将使环境补救解决方案更具成本效益和更可持续。该项目将利用调查员建立的一个外联计划,让当地高中生参与STEM研究。调查员还将为高中教师提供课程。该项目的首要目标是评估钯催化剂在从纳米颗粒缩小到单原子限制时的不同表现。采用各种先进的表征技术,如高能X射线吸收和扫描电子显微镜,可以将钯单原子催化剂材料的性能与合成参数相关联。其他性质,包括原子分散性、局部配位环境和活性金属位置的氧化状态,将进一步与对环境和人类健康构成重大关切的有毒卤代有机化合物和硝酸盐(以及可能存在的其他含氧阴离子,如亚硝酸盐、溴酸盐、铬酸盐和高氯酸盐)的还原去除的催化性能相关。此外,PI将研究钯单原子催化剂在长期使用和复杂的水基质下与纳米颗粒催化剂的不同表现,以评估它们在环境中的命运。参加这个项目的研究生和本科生将获得跨学科的知识,特别是在材料科学、高级光谱学和环境工程的界面上。该项目将利用PI建立的一个外联计划,让当地高中生参与STEM研究。PI还将为高中教师提供课程。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conflicting Roles of Coordination Number on Catalytic Performance of Single-Atom Pt Catalysts
- DOI:10.1021/acscatal.1c00627
- 发表时间:2021-04-22
- 期刊:
- 影响因子:12.9
- 作者:Huang, Dahong;He, Ning;Kim, Jae-Hong
- 通讯作者:Kim, Jae-Hong
Environmental Materials beyond and below the Nanoscale: Single-Atom Catalysts
- DOI:10.1021/acsestengg.0c00136
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:S. Weon;Dahong Huang;Kali Rigby;Chiheng Chu;Xuanhao Wu;Jae-Hong Kim
- 通讯作者:S. Weon;Dahong Huang;Kali Rigby;Chiheng Chu;Xuanhao Wu;Jae-Hong Kim
Deciphering the issue of single-atom catalyst stability
- DOI:10.1016/j.coche.2023.100921
- 发表时间:2023-06
- 期刊:
- 影响因子:6.6
- 作者:Kali Rigby;Jae-Hong Kim
- 通讯作者:Kali Rigby;Jae-Hong Kim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaehong Kim其他文献
Development of rate-compatible structured LDPC CODEC algorithms and hardware IP
速率兼容的结构化LDPC CODEC算法和硬件IP的开发
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
S. McLaughlin;Jaehong Kim;Demijan Klinc;Woonhaing Hur;A. Ramamoorthy;Sunghwan Kim - 通讯作者:
Sunghwan Kim
Design of a Soft Wearable Passive Fitness Device for Upper Limb Resistance Exercise
一种软质可穿戴上肢阻力运动被动健身装置的设计
- DOI:
10.1109/iros47612.2022.9981189 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
J. Park;Jaehong Kim;Dong Hyun Kim;Jungsik Hwang;Youngtae G. Kim;S. Hyung;S. Ko;Minhyung Lee - 通讯作者:
Minhyung Lee
The Design of Rate-Compatible Structured Low-Density Parity-Check Codes
速率兼容结构化低密度奇偶校验码的设计
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jaehong Kim - 通讯作者:
Jaehong Kim
Effect of clay content on well-graded sands due to infiltration
渗透作用下粘土含量对级配砂的影响
- DOI:
10.1016/j.enggeo.2008.08.002 - 发表时间:
2008 - 期刊:
- 影响因子:7.4
- 作者:
Sangseom Jeong;Jaehong Kim;Kyu - 通讯作者:
Kyu
Adaptive gesture tracking and recognition using acceleration sensors for a mobile device
使用移动设备的加速度传感器进行自适应手势跟踪和识别
- DOI:
10.1504/ijwmc.2015.068624 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Minsu Jang;Jaehong Kim;Yongho Seo;H. Yang - 通讯作者:
H. Yang
Jaehong Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaehong Kim', 18)}}的其他基金
I-Corps: Catalytic membrane to eliminate organic pollutants in industrial wastewater
I-Corps:消除工业废水中有机污染物的催化膜
- 批准号:
2330630 - 财政年份:2023
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
ERASE-PFAS: Collaborative Research: Nickel and Palladium Single-Atom Electrocatalysts for Selective Capture and Destruction of PFAS in Complex Water Matrices
ERASE-PFAS:合作研究:镍和钯单原子电催化剂用于选择性捕获和破坏复杂水基质中的 PFAS
- 批准号:
2120418 - 财政年份:2021
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
Quantitative Insights on Environmental Implications of Functionalizing Fullerenes
功能化富勒烯对环境影响的定量见解
- 批准号:
1439048 - 财政年份:2014
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
CBET: Upconversion Enhanced Visible Light Sensitization of Semiconductor Photocatalysts for Environmental Application
CBET:用于环境应用的半导体光催化剂的上转换增强可见光敏化
- 批准号:
1335934 - 财政年份:2013
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
Quantitative Insights on Environmental Implications of Functionalizing Fullerenes
功能化富勒烯对环境影响的定量见解
- 批准号:
1235916 - 财政年份:2012
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
Converting Visible Light to UVC: Lanthanide Upconversion Nano-Phosphors for Light-Activated Biocidal Surface Development
将可见光转换为 UVC:用于光激活杀菌表面开发的镧系元素上转换纳米荧光粉
- 批准号:
1033866 - 财政年份:2011
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
Collaborative Research: Developing Novel Surface Immobilized Photocatalysts Using Functionalized C60
合作研究:使用功能化 C60 开发新型表面固定光催化剂
- 批准号:
0932872 - 财政年份:2009
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
相似国自然基金
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Miniaturization of Noise Filters beyond the Limits of Magnetic Materials by Active Feedback
通过主动反馈超越磁性材料限制的噪声滤波器小型化
- 批准号:
23K13315 - 财政年份:2023
- 资助金额:
$ 38.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Follow on to "From Lima to Canton and Beyond: An AI-aided heritage materials research platform for studying globalisation through art"
继续“从利马到广州及其他地区:通过艺术研究全球化的人工智能辅助遗产材料研究平台”
- 批准号:
AH/Y006100/1 - 财政年份:2023
- 资助金额:
$ 38.98万 - 项目类别:
Research Grant
FuSe: Bio-inspired sensorimotor control for robotic locomotion with neuromorphic architectures using beyond-CMOS materials and devices
FuSe:使用超越 CMOS 材料和设备的神经形态架构的机器人运动仿生感觉运动控制
- 批准号:
2328815 - 财政年份:2023
- 资助金额:
$ 38.98万 - 项目类别:
Continuing Grant
Shock-related processes in planetary materials: Earth and beyond
行星材料中与冲击相关的过程:地球及其他地方
- 批准号:
RGPIN-2016-05789 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Discovery Grants Program - Individual
Discovery and control of high-Z materials - Beyond Mott and topological materials
高Z材料的发现和控制——超越莫特和拓扑材料
- 批准号:
2204811 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Continuing Grant
DNA Base Detection Using 2D Materials Beyond Graphene
使用石墨烯以外的 2D 材料进行 DNA 碱基检测
- 批准号:
10360199 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Development and Application of beta-detected NMR to Quantum Materials and Beyond
β 检测核磁共振在量子材料及其他领域的开发和应用
- 批准号:
RGPIN-2019-04257 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Discovery Grants Program - Individual
Advanced Materials for Novel Energy Storage Technologies Beyond Lithium-Ion Batteries
用于锂离子电池之外的新型储能技术的先进材料
- 批准号:
RGPIN-2018-06725 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Discovery Grants Program - Individual
Design and testing of smart antifouling materials: beyond biocidal approaches
智能防污材料的设计和测试:超越杀菌方法
- 批准号:
2824991 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Studentship
Beyond Graphene - Design, Growth, and Characterization of Alternative 2-Dimensional Materials
超越石墨烯 - 替代二维材料的设计、生长和表征
- 批准号:
RGPIN-2017-06449 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Discovery Grants Program - Individual