Efficient Simulation of Nonlinear Flows in Rarefied Gases
稀薄气体中非线性流动的有效模拟
基本信息
- 批准号:248330224
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The computation of gas flows is typically based on the Navier-Stokes equations for the velocity field combined with the energy balance and Fourier's law if the temperature field is of interest. However, these classical models are valid only for flows close to thermal equilibrium. For situations in rarefied gases or in microscopic settings the Navier-Stokes-Fourier system (NSF) is known to produce physically wrong results, so that they can not be used in these cases. Over the past years new continuum models have been developed on the bases of moment equations of the Boltzmann equation which extend the range of applicability of conventional fluid dynamics. One of these models is the Regularized 13-Moment system (R13) which forms a set of partial differential equations for density, velocity and temperature, as well as stress tensor and heat flux. In an earlier DFG project the R13 system has been successfully developed to a mature simulation tool for slow rarefied gas systems, like in microscopic settings.However, one of the main drawbacks of classical moment equations like the R13 system is the restriction to small perturbation like in slow, low Mach number processes. The mathematical reason can be found in the expansion technique used to approximate the velocity distribution function of the gas particles. The current project explores new ways to extend the use of moment equations to strongly nonlinear processes, exhibiting strong variations in velocity and temperature, like shock waves in hypersonics. During the project we will combine two modern approaches to reconstruct a distribution from moments: maximum likelihood/entropy estimation from statistics and the quadrature method of moments, introduced in multi-phase/multi-disperse flows. A successful and efficient reconstruction will allow to handle boundary conditions and to implement a numerical method easily. One application-inspired test case will consider flow impingement of satellite thrusters.
气流的计算通常基于速度场的Navier-Stokes方程,如果对温度场感兴趣,则结合能量平衡和傅立叶定律。然而,这些经典模型仅对接近热平衡的流动有效。对于稀薄气体或微观环境中的情况,已知Navier-Stokes-Fourier系统(NSF)会产生物理错误的结果,因此它们不能用于这些情况。在过去的几年中,新的连续介质模型已经发展的基础上的矩方程的玻尔兹曼方程,扩大了适用范围的传统流体动力学。这些模型之一是正则13矩系统(R13),它形成了一组密度,速度和温度的偏微分方程,以及应力张量和热通量。在早期的DFG项目中,R13系统已经成功地发展成为一个成熟的模拟工具,用于缓慢稀薄气体系统,如在微观环境中,然而,经典的矩方程,如R13系统的主要缺点之一是限制小扰动,如在缓慢,低马赫数过程。数学上的原因可以在用于近似气体粒子的速度分布函数的展开技术中找到。目前的项目探索了新的方法,将力矩方程的使用扩展到强非线性过程,表现出速度和温度的强烈变化,如高超音速中的冲击波。在项目过程中,我们将联合收割机结合两种现代方法来重建矩分布:统计学中的最大似然/熵估计和多相/多分散流中引入的矩量法。一个成功的和有效的重建将允许处理边界条件,并容易实现的数值方法。一个应用启发的测试案例将考虑卫星推进器的气流冲击。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Manuel Torrilhon其他文献
Professor Dr. Manuel Torrilhon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Manuel Torrilhon', 18)}}的其他基金
Modellierung und Numerik von Mikro-Strömungen
微流的建模和数值模拟
- 批准号:
5442788 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Fellowships
Adaptive Coupling of the Maximum-Entropy Cascade for the Vlasov Equation
Vlasov 方程最大熵级联的自适应耦合
- 批准号:
501202384 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Model Cascades for Stochastic Particle Simulations of Rarefied Polyatomic Gases
稀薄多原子气体随机粒子模拟的模型级联
- 批准号:
525660607 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
- 批准号:
2338843 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Simulation of nonlinear coseismic deformation
非线性同震变形模拟
- 批准号:
574159-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
- 批准号:
2244651 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
The development of nonlinear ship-tank coupling simulation system under high wave condition considering the nonlinear tank load
考虑非线性罐体载荷的高波工况非线性船罐耦合仿真系统开发
- 批准号:
22K14435 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Linear and Nonlinear Nanophotonics: Simulation, Deep Learning and Inverse Design
线性和非线性纳米光子学:仿真、深度学习和逆向设计
- 批准号:
555670-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Linear and Nonlinear Nanophotonics: Simulation, Deep Learning and Inverse Design
线性和非线性纳米光子学:仿真、深度学习和逆向设计
- 批准号:
555670-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Linear and Nonlinear Nanophotonics: Simulation, Deep Learning and Inverse Design
线性和非线性纳米光子学:仿真、深度学习和逆向设计
- 批准号:
555670-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Quantum and nonlinear optics with cold atoms in a ring cavity / Simulation of quantum transport with cold atoms
环腔中冷原子的量子和非线性光学/冷原子量子输运模拟
- 批准号:
2438978 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Representation of coupled quantum dots by nonlinear stochastic ordinary equation and its application to simulation of THz communication system
耦合量子点的非线性随机常方程表示及其在太赫兹通信系统仿真中的应用
- 批准号:
19K04394 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
- 批准号:
2016414 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant