Coordination Funds

协调基金

基本信息

项目摘要

The numerical simulation of phenomena that can be modeled by partial differential equations (PDEs) is an essential tool in numerous scientific disciplines. While the development of accurate numerical methods for various systems of PDEs is still a very active research field, most complex applications are described by coupled systems of several PDEs, i.e. by heterogeneous models. This research unit focuses on the modeling and simulation of coupled systems arising in the description of magnetised plasmas, complex fluids and electro-chemical processes.Typically, no rigorous mathematical solution theory is available for these kind of complex, coupled, nonlinear systems. Therefore, it is desirable to develop numerical methods that can be shown to preserve certain structural properties of the underlying model. Examples of important structural properties are conservation of mass, charge, momentum and energy but also the consistency with an entropy balance equation which can be derived from the equations of interest. Other important structural properties are the preservation of asymptotic behaviour and exact approximation of steady states.In this research unit we distinguish two different situations for the appearance of heterogeneous models. In one of these situations multiple physical processes are considered in the same point or region of the domain of interest. We refer to such a situation as bulk-coupling. A typical example is the Vlasov equation of kinetic theory coupled to Maxwell's equations of electrodynamics. In another situation different mathematical models are used in different parts of the domain and glued together at common boundaries. We call this situation interface-coupling. Typical examples where interface-coupling arise are combinations of nonlinear and linearised models or the use of moment equations with different numbers of moments in different parts of the domain. For bulk- as well as interface-coupled heterogeneous models the development of structure-preserving methods is a new research direction which we address in a joint effort combining mathematical and physical modeling, numerical analysis and scientific computing. In some projects the structural elements must still be identified. In other cases we can build new numerical methods on established models. Numerical simulations will play a crucial role in all projects. In order to move from relatively simple test problems to adaptive simulations on parallel computers, the implications of coupling algorithms for high-performing computing will also be studied.
可以用偏微分方程(PDE)建模的现象的数值模拟是许多科学学科中必不可少的工具。虽然各种系统的偏微分方程的精确数值方法的发展仍然是一个非常活跃的研究领域,最复杂的应用程序描述的耦合系统的几个偏微分方程,即异构模型。该研究单元专注于磁化等离子体,复杂流体和电化学过程描述中产生的耦合系统的建模和仿真。通常,这些复杂,耦合,非线性系统没有严格的数学解理论。因此,它是可取的,以发展数值方法,可以证明,以保持某些结构特性的基础模型。重要的结构性质的例子是质量、电荷、动量和能量守恒,以及与熵平衡方程的一致性,该熵平衡方程可以从感兴趣的方程导出。其他重要的结构属性是渐近行为的保存和精确的近似稳态。在本研究单元中,我们区分两种不同的情况下出现的异质模型。在这些情况之一中,在感兴趣的域的同一点或区域中考虑多个物理过程。我们将这种情况称为批量耦合。一个典型的例子是耦合到麦克斯韦电动力学方程的运动论的弗拉索夫方程。在另一种情况下,不同的数学模型用于域的不同部分,并在公共边界处粘合在一起。我们称这种情况为接口耦合。出现界面耦合的典型例子是非线性和线性模型的组合,或者在域的不同部分使用具有不同数量力矩的力矩方程。 对于体以及接口耦合的异构模型的结构保持方法的发展是一个新的研究方向,我们在一个共同的努力相结合的数学和物理建模,数值分析和科学计算解决。在某些项目中,仍然必须确定结构要素。在其他情况下,我们可以在已建立的模型上建立新的数值方法。数值模拟将在所有项目中发挥至关重要的作用。为了从相对简单的测试问题转移到并行计算机上的自适应模拟,还将研究耦合算法对高性能计算的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Manuel Torrilhon其他文献

Professor Dr. Manuel Torrilhon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Manuel Torrilhon', 18)}}的其他基金

Efficient Simulation of Nonlinear Flows in Rarefied Gases
稀薄气体中非线性流动的有效模拟
  • 批准号:
    248330224
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modellierung und Numerik von Mikro-Strömungen
微流的建模和数值模拟
  • 批准号:
    5442788
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Adaptive Coupling of the Maximum-Entropy Cascade for the Vlasov Equation
Vlasov 方程最大熵级联的自适应耦合
  • 批准号:
    501202384
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
Model Cascades for Stochastic Particle Simulations of Rarefied Polyatomic Gases
稀薄多原子气体随机粒子模拟的模型级联
  • 批准号:
    525660607
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Coordination Funds
协调基金
  • 批准号:
    436278370
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    422443988
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    423033110
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    424702474
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    427459213
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Coordination Funds
协调基金
  • 批准号:
    427358138
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    428795801
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    426581255
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Clinical Research Units
Coordination Funds
协调基金
  • 批准号:
    428918039
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    416092893
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Units
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了