NSF-BSF: Small: AF: Towards a Unified Theory of Spanners
NSF-BSF:小:AF:迈向扳手的统一理论
基本信息
- 批准号:2121952
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Graphs are abstract objects that model entities, represented by vertices, and relationships between them, represented by edges. Graphs are found in numerous applications, such as the Internet, social networks, transportation networks, wireless and sensor networks, and they are often massive in size. Accordingly, coping with massive graphs is a pressing challenge of the current time. A principled approach for dealing with massive graphs is to compress big input graphs into compact subgraphs, called spanners, that approximate all pairwise distances to within some user-defined error parameter. The compactness, coupled with distance-preserving properties, make spanners useful in various application domains, such as distributed computing, approximation algorithms, wireless network design, logistics and planning. This project aims to develop new algorithms for constructing spanners that achieve optimal trade-offs between the most fundamental compactness measures and the distance error parameter. Along with the scientific goals, the investigator includes an education plan that takes advantage of the practical relevance of this project to attract and train graduate and undergraduate students with diverse backgrounds. This project focuses on two directions. The first direction seeks to improve the state-of-the-art spanner constructions via a unified framework, applicable to a wide range of settings. Specifically, the investigator aims at identifying common technical and conceptual barriers arising in multiple settings and computational models, and developing general tools and techniques to address these barriers. This will provide theoretical tools to connect and transfer results from one setting to another. The second direction focuses on achieving truly optimal tradeoffs between the distance error parameter and the most fundamental compactness measures, including the number of edges and/or total edge length, for various graph families. Moreover, as part of this research, the investigator is identifying graph families that share similar sets of structural properties, focusing on graph families that are important for practical applications, and then developing techniques that exploit such structural properties to provide better spanner constructions for these applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图是抽象对象,它对由顶点表示的实体和由边表示的实体之间的关系进行建模。图存在于许多应用中,诸如因特网、社交网络、运输网络、无线和传感器网络,并且它们通常在大小上是巨大的。因此,处理海量图形是当前的一个紧迫挑战。 处理大规模图的一个原则性方法是将大输入图压缩成紧凑的子图,称为spectum,它将所有成对距离近似到用户定义的误差参数内。空间的紧凑性,加上距离保持属性,使空间在各种应用领域,如分布式计算,近似算法,无线网络设计,物流和规划。该项目旨在开发新的算法来构建空间,实现最基本的紧凑性措施和距离误差参数之间的最佳权衡。沿着科学目标,调查者包括一个教育计划,利用这个项目的实际相关性,吸引和培养具有不同背景的研究生和本科生。该项目侧重于两个方向。第一个方向是通过一个统一的框架来改进最先进的可伸缩结构,适用于广泛的环境。具体而言,调查的目的是确定在多种设置和计算模型中出现的常见技术和概念障碍,并开发通用工具和技术来解决这些障碍。这将提供理论工具,将结果从一种设置连接和转移到另一种设置。第二个方向的重点是实现真正的最佳折衷之间的距离误差参数和最基本的紧凑性措施,包括边缘的数量和/或总的边缘长度,为各种图形的家庭。此外,作为这项研究的一部分,研究人员正在识别具有相似结构属性的图形族,重点关注对实际应用很重要的图形族,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Matching Algorithms Under Vertex Updates
顶点更新下的动态匹配算法
- DOI:10.4230/lipics.itcs.2022.96
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Le, Hung;Milenkovic, Lazar;Solomon, Shay;Vassilevska Williams, Virginia
- 通讯作者:Vassilevska Williams, Virginia
Locality-Sensitive Orderings and Applications to Reliable Spanners
区域敏感的排序和可靠 Spanner 的应用
- DOI:10.1145/3519935.3520042
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Filtser, Arnold;Le, Hung
- 通讯作者:Le, Hung
Optimal Approximate Distance Oracle for Planar Graphs
平面图的最佳近似距离预言机
- DOI:10.1109/focs52979.2021.00044
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Le, Hung;Wulff-Nilsen, Christian
- 通讯作者:Wulff-Nilsen, Christian
Near-Optimal Spanners for General Graphs in (Nearly) Linear Time
(近)线性时间内一般图的近最优 Spanner
- DOI:10.1137/1.9781611977073.132
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Le, Hung;Solomon, Shay
- 通讯作者:Solomon, Shay
Low Treewidth Embeddings of Planar and Minor-Free Metrics
平面和次要自由度量的低树宽嵌入
- DOI:10.1109/focs54457.2022.00105
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Filtser, Arnold;Le, Hung
- 通讯作者:Le, Hung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hung Le其他文献
Reliable Spanners: Locality-Sensitive Orderings Strike Back
可靠的扳手:区域敏感订单的反击
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Arnold Filtser;Hung Le - 通讯作者:
Hung Le
Validation of Prognostic Scores in Patients With Metastatic Urothelial Cancer Enrolling in Phase I Targeted Therapy or Next Generation Immunotherapy Trials.
参加 I 期靶向治疗或下一代免疫治疗试验的转移性尿路上皮癌患者的预后评分验证。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.2
- 作者:
O. Alhalabi;A. Hahn;P. Msaouel;F. Meric;N. Wilson;A. Naing;S. Piha;Janku Filip;S. Pant;T. Yap;D. Hong;S. Fu;D. Karp;Kimberly Beltran;E. Campbell;Hung Le;M. Campbell;A. Shah;N. Tannir;A. Siefker;Jianjun Gao;J. Roszik;V. Subbiah - 通讯作者:
V. Subbiah
Theory of Computing
计算理论
- DOI:
10.4086/toc - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana - 通讯作者:
Varun Suriyanarayana
Building a Knowledge Graph of Vietnam Tourism from Text
从文本构建越南旅游知识图谱
- DOI:
10.1007/978-981-33-4069-5_1 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
P. Do;Hung Le - 通讯作者:
Hung Le
Self-Assttentive Associative Memory
自我肯定联想记忆
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hung Le;T. Tran;S. Venkatesh - 通讯作者:
S. Venkatesh
Hung Le的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hung Le', 18)}}的其他基金
CAREER: Geometric Techniques for Topological Graph Algorithms
职业:拓扑图算法的几何技术
- 批准号:
2237288 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
NSF-BSF: NeTS: Small: Making BGP work for real-time interactive applications
NSF-BSF:NeTS:小型:使 BGP 适用于实时交互式应用程序
- 批准号:
2344761 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Algorithmic and Information-Theoretic Challenges in Causal Inference
NSF-BSF:AF:小:因果推理中的算法和信息论挑战
- 批准号:
2321079 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: Advancing Coding Theory Through the Lens of Pseudorandomness
NSF-BSF:AF:小:通过伪随机性的视角推进编码理论
- 批准号:
2231157 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: CNS Core: Small: Reliable and Zero-Power Timekeepers for Intermittently Powered Computing Devices via Stochastic Magnetic Tunnel Junctions
NSF-BSF:CNS 核心:小型:通过随机磁隧道结为间歇供电计算设备提供可靠且零功耗的计时器
- 批准号:
2400463 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: AF: Small: New directions in geometric traversal theory
NSF-BSF:AF:小:几何遍历理论的新方向
- 批准号:
2317241 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2247576 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant