Fast and Scalable Multigrid Methods for Hypergraph Partitioning Problems

超图分区问题的快速且可扩展的多重网格方法

基本信息

  • 批准号:
    1522751
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

The advancement of science requires the development of new mathematical methods that can rapidly and reliably solve large-scale scientific computing problems. Any modern scientific computing tool and supercomputer must have the ability to effectively (and one hopes optimally) manipulate both the data and parallel computational processes to manage: (a) the load-balancing in parallel computation; (b) data migration between components in a supercomputer; (c) performance optimization; (d) task scheduling; and (e) storage/memory reduction and data compression. These and many other problems (such as electronic chip design and community detection in social networks) can be tackled using a family of mathematical optimization problems called partitioning that are formulated on mathematical models called hypergraphs. However, partitioning of hypergraphs is extremely hard in theory and practice. To tackle it, this research project will develop and investigate efficient and effective methods that are inspired by multigrid, which is one of the most successful classes of numerical methods for solving large-scale scientific computing problems. The technical goal of this project is to carry out computational and theoretical investigations in algebraic and nonlinear multigrid methods for hypergraph partitioning motivated by various problems in the areas of computational mathematics and scientific computing. These investigations aim to provide breakthroughs in practical computational capabilities, modeling matrix-matrix (vector) multiplication, matrix partitioning, and general load-balancing for scientific computing applications. The results of the project will also deepen understanding of theory of multigrid methods applied to computational discrete optimization. In recent decades, multigrid-inspired methods for graphs (also known as multilevel) led to important breakthroughs in a variety of computational problems. However, in contrast to the multigrid-inspired methods for graph cut-based problems (such as graph partitioning and linear arrangement), multigrid-inspired methods for hypergraphs are relatively unexplored. This project aims to develop theory related to multigrid-inspired methods for discrete optimization problems on graphs and hypergraphs, of great practical importance in computational mathematics.
科学的进步要求发展新的数学方法,能够快速、可靠地解决大规模的科学计算问题。任何现代科学计算工具和超级计算机都必须有能力有效地(人们希望是最佳的)操纵数据和并行计算过程来管理:(a)并行计算中的负载平衡;(b)超级计算机组件之间的数据迁移;(c)性能优化;(d)任务调度;(e)存储/内存减少和数据压缩。这些问题和许多其他问题(例如电子芯片设计和社交网络中的社区检测)可以使用一组称为分区的数学优化问题来解决,这些问题是在称为超图的数学模型上公式化的。然而,超图的划分在理论和实践中都是非常困难的。为了解决这个问题,该研究项目将开发和研究受多重网格启发的高效方法,多重网格是解决大规模科学计算问题的最成功的数值方法之一。该项目的技术目标是在计算数学和科学计算领域的各种问题的驱动下,对超图划分的代数和非线性多网格方法进行计算和理论研究。这些研究旨在为科学计算应用提供实用计算能力、矩阵-矩阵(向量)乘法建模、矩阵划分和一般负载平衡方面的突破。该项目的成果也将加深对应用于计算离散优化的多重网格方法理论的理解。近几十年来,图的多网格启发方法(也称为多层)在各种计算问题上取得了重要突破。然而,与基于图切割问题(如图划分和线性排列)的多网格启发方法相比,超图的多网格启发方法相对未被探索。本项目旨在发展与图和超图上离散优化问题的多网格启发方法相关的理论,在计算数学中具有重要的实际意义。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generating realistic scaled complex networks
  • DOI:
    10.1007/s41109-017-0054-z
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Christian Staudt;M. Hamann;Alexander Gutfraind;Ilya Safro;Henning Meyerhenke
  • 通讯作者:
    Christian Staudt;M. Hamann;Alexander Gutfraind;Ilya Safro;Henning Meyerhenke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilya Safro其他文献

FAIRLEARN: Configurable and Interpretable Algorithmic Fairness
FAIRLEARN:可配置和可解释的算法公平性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ankit Kulshrestha;Ilya Safro
  • 通讯作者:
    Ilya Safro
Algebraic Distance on Graphs
图上的代数距离
Multilevel Graph Partitioning for Three-Dimensional Discrete Fracture Network Flow Simulations
  • DOI:
    10.1007/s11004-021-09944-y
  • 发表时间:
    2021-05-26
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Hayato Ushijima-Mwesigwa;Jeffrey D. Hyman;Aric Hagberg;Ilya Safro;Satish Karra;Carl W. Gable;Matthew R. Sweeney;Gowri Srinivasan
  • 通讯作者:
    Gowri Srinivasan
Randomized heuristics for exploiting Jacobian scarcity
利用雅可比稀缺性的随机启发式
A Measure of the Connection Strengths between Graph Vertices with Applications
图顶点间连接强度的测量及其应用
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Chen;Ilya Safro
  • 通讯作者:
    Ilya Safro

Ilya Safro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilya Safro', 18)}}的其他基金

RAPID: Automated discovery of COVID-19 related hypotheses using publicly available scientific literature
RAPID:使用公开的科学文献自动发现 COVID-19 相关假设
  • 批准号:
    2027864
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
  • 批准号:
    2035606
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
RAPID: Automated discovery of COVID-19 related hypotheses using publicly available scientific literature
RAPID:使用公开的科学文献自动发现 COVID-19 相关假设
  • 批准号:
    2127776
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: QIA: Large Scale QAOA Quantum Simulator
合作研究:EAGER:QIA:大规模 QAOA 量子模拟器
  • 批准号:
    2122793
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
EAGER: SSDIM: Multiscale Methods for Generating Infrastructure Networks
EAGER:SSDIM:生成基础设施网络的多尺度方法
  • 批准号:
    1745300
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
EAGER: Feedback-based Network Optimization for Smart Cities
EAGER:基于反馈的智慧城市网络优化
  • 批准号:
    1647361
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
FAST CAR-T: Faster, Adaptive and Scalable Technologies For CAR-T Manufacture
FAST CAR-T:更快、自适应和可扩展的 CAR-T 制造技术
  • 批准号:
    EP/Z532770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
  • 批准号:
    2335583
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了