Mechanics-Based Algorithms for Sampling, Control, and Learning in Non-Convex Domains

基于力学的非凸域采样、控制和学习算法

基本信息

  • 批准号:
    2122856
  • 负责人:
  • 金额:
    $ 33.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This grant will fund research that enables smart devices to adapt automatically to novel situations, with reliable guarantees of safe and efficient behavior, thereby promoting the progress of science and advancing the national prosperity and health. In the near future, a large portion of the population will rely on devices such as self-driving cars and smart medical implants that make safety-critical decisions without human intervention. In these devices, it is not possible for engineers to manually prescribe all the behaviors that will arise during operation. A self-driving car must steer reliably in unfamiliar road conditions. A neural stimulator for seizure suppression must be personalized to the individual patient. To enable deployment of highly autonomous smart devices on a large scale, these devices must be able to learn appropriate behaviors by themselves. Currently, most learning algorithms for real-world automated systems lack provable guarantees for safety and performance. The methods devised in this project will overcome this limitation, benefitting applications in transportation, healthcare, and home automation. The development of remotely controllable physical experiments will help make principles of control and automated learning accessible to high school and undergraduate students.This research aims to make fundamental contributions to the development of a model-based reinforcement learning methodology that guarantees stability and near-optimal performance for a wide class of unknown nonlinear stochastic systems. It achieves this outcome by addressing two unresolved challenges for existing learning methods: 1) a lack of provable guarantees for convergence to desired probability distributions and to global optima of the corresponding non-convex optimization problems, and 2) the lack of stability guarantees or need for initial stabilizing controllers. The research will leverage new insights on non-smooth stochastic processes to quantitatively bound convergence of solutions around global optima for a collection of algorithms derived from mechanics. Stabilizing controllers for nonlinear stochastic systems will be obtained by a novel variation on the policy iteration method, without requiring an initial stabilizing controller. The work will contribute to a rigorous understanding of algorithms for sampling, optimization, and learning for non-convex losses in non-convex domains, as well as methods of control policy evaluation, stability verification, and optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将资助使智能设备能够自动适应新情况的研究,并可靠地保证安全和有效的行为,从而促进科学进步,促进国家繁荣和健康。在不久的将来,很大一部分人口将依赖于自动驾驶汽车和智能医疗植入物等设备,这些设备可以在没有人为干预的情况下做出安全关键决策。在这些设备中,工程师不可能手动规定操作期间将出现的所有行为。自动驾驶汽车必须在不熟悉的道路条件下可靠地转向。用于抑制癫痫发作的神经刺激器必须针对患者个体进行个性化。 为了能够大规模部署高度自主的智能设备,这些设备必须能够自己学习适当的行为。目前,大多数用于现实世界自动化系统的学习算法缺乏安全性和性能的可证明保证。该项目中设计的方法将克服这一限制,使交通、医疗保健和家庭自动化领域的应用受益。远程可控的物理实验的发展将有助于使控制和自动学习的原则访问高中和本科生,本研究的目的是作出根本性的贡献,发展基于模型的强化学习方法,保证稳定性和近最优性能的广泛的一类未知的非线性随机系统。它通过解决现有学习方法的两个未解决的挑战来实现这一结果:1)缺乏收敛到所需概率分布和相应非凸优化问题的全局最优值的可证明保证,以及2)缺乏稳定性保证或需要初始稳定控制器。该研究将利用对非光滑随机过程的新见解,为来自力学的一系列算法的全局最优解定量约束收敛。针对非线性随机系统的镇定控制问题,提出了一种新的策略迭代方法,不需要初始镇定控制器。这项工作将有助于严格理解非凸域中非凸损失的采样、优化和学习算法,以及控制策略评估、稳定性验证和优化方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sufficient Conditions for Persistency of Excitation with Step and ReLU Activation Functions
Neural Network Independence Properties with Applications to Adaptive Control
Constrained Langevin Algorithms with L-mixing External Random Variables
  • DOI:
    10.48550/arxiv.2205.14192
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Zheng;Andrew G. Lamperski
  • 通讯作者:
    Yu Zheng;Andrew G. Lamperski
Projected Stochastic Gradient Langevin Algorithms for Constrained Sampling and Non-Convex Learning
  • DOI:
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew G. Lamperski
  • 通讯作者:
    Andrew G. Lamperski
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Lamperski其他文献

Andrew Lamperski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Lamperski', 18)}}的其他基金

Unveiling Dynamic Relations from Corrupted Data Streams
从损坏的数据流中揭示动态关系
  • 批准号:
    1727096
  • 财政年份:
    2017
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
  • 批准号:
    81900115
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
  • 批准号:
    81771933
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Reality-based Interaction用户界面模型和评估方法研究
  • 批准号:
    61170182
  • 批准年份:
    2011
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
  • 批准号:
    30470665
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
  • 批准号:
    60376005
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
  • 批准号:
    2338171
  • 财政年份:
    2024
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Continuing Grant
AI innovation in the supply chain of consumer packaged-goods for recognising objects in retail execution, supply chain management and smart factories: using novel diffusion-based optimisation algorithms and diffusion-based generative models
消费包装商品供应链中的人工智能创新,用于识别零售执行、供应链管理和智能工厂中的对象:使用新颖的基于扩散的优化算法和基于扩散的生成模型
  • 批准号:
    10081810
  • 财政年份:
    2023
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Collaborative R&D
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    $ 33.53万
  • 项目类别:
Designing Bayesian based Adaptive Resource Constrained Hardware Algorithms for Next Generation of Embedded Systems
为下一代嵌入式系统设计基于贝叶斯的自适应资源受限硬件算法
  • 批准号:
    2890421
  • 财政年份:
    2023
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Studentship
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
  • 批准号:
    2237830
  • 财政年份:
    2023
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Continuing Grant
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
  • 批准号:
    2312599
  • 财政年份:
    2023
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant
SBIR Phase I: Improved image compression targeting machine learning based detection algorithms
SBIR 第一阶段:针对基于机器学习的检测算法改进图像压缩
  • 批准号:
    2233091
  • 财政年份:
    2023
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
  • 批准号:
    2318611
  • 财政年份:
    2023
  • 资助金额:
    $ 33.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了