Unveiling Dynamic Relations from Corrupted Data Streams

从损坏的数据流中揭示动态关系

基本信息

  • 批准号:
    1727096
  • 负责人:
  • 金额:
    $ 55.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Systems such as financial markets, neural systems, the power grid, and weather systems are governed by networks of interacting processes. In such systems, the complexity of processes and their interactions makes mathematical modeling from first-principles ineffective. In these cases, models of the relationships between the processes can be obtained directly from measured data. However, methods to create models of interacting systems from data should account for common ways that data become corrupted. In real-world systems, sensor readings can be corrupted, clocks can get out of sync, and messages can get lost in transmission over a wireless network. Thus real-world data can be noisy, it can be recorded out of order, and parts of data can be missing. This project builds a novel framework for identifying interdependencies between components that comprise a networked system with realistic modeling assumptions on the measured data from system components. The project will provide provable guarantees and analysis results on the extent of the impact of data corruption on the reconstruction of the interaction topology. Based on the analytical insights, strategies will be devised for designing sensor systems and networks that are less sensitive to data corruption. The work will have important ramifications for network models arising in biology, physical sciences, engineering, and economics. Methods developed will be particularly relevant for identifying relationships in the face of data-corruption, including imperfect timing and lost information that are common in low cost and energy constrained sensing systems. The project will also include development of graduate level course and hands-on experience for undergraduates in designing and deploying sensor network.The dynamic relationships between interacting linear systems can be modeled via a directed graph with transfer functions associated with the edges. Over the last decade, a rich collection of methods that identify graphical structures as well as the transfer functions have been devised. However, in the area of determining interaction topologies, there is a paucity of methods that account for, and quantify, the extent of the errors introduced due to several common types of data corruption, such as sensor noise, time-stamp inaccuracy, or packet loss. Utilizing techniques from estimation theory and graph theory, this project will characterize the degradation that corrupted data streams can cause on network identification and estimation algorithms. In particular, it will show how corrupt data can lead to the prediction of spurious relationships if existing algorithms are applied without accounting for data corruption. Furthermore, the work will characterize how these spurious relationships can spread through a network when multiple data streams are corrupted. To remedy the situation, the work will show how strategic placement of high-fidelity sensors can localize the influence of corrupted data. For engineered systems such as power grids and Internet-of-Things networks, the work will lead to methods for designing networks which are resilient to data corruption. The theoretical analysis of the methods will be accompanied by simulations, as well as experiments on a test-bed performing distributed sensing and computation.
金融市场、神经系统、电网和天气系统等系统都是由相互作用的过程网络控制的。在这样的系统中,过程及其相互作用的复杂性使得基于第一原理的数学建模变得无效。在这些情况下,过程之间的关系的模型可以直接从测量数据获得。然而,从数据中创建交互系统模型的方法应该考虑到数据被破坏的常见方式。在现实世界的系统中,传感器读数可能会被破坏,时钟可能会失去同步,消息可能会在无线网络传输中丢失。因此,真实世界的数据可能是嘈杂的,它可能被无序记录,部分数据可能丢失。该项目建立了一个新的框架,用于识别组件之间的相互依赖关系,包括一个网络系统与现实的建模假设的测量数据从系统组件。该项目将提供有关数据损坏对交互拓扑重建的影响程度的可证明的保证和分析结果。基于分析见解,将设计对数据损坏不太敏感的传感器系统和网络的策略。这项工作将对生物学、物理科学、工程学和经济学中出现的网络模型产生重要影响。所开发的方法将特别适用于识别数据损坏时的关系,包括低成本和能量受限传感系统中常见的不完美定时和信息丢失。该项目还将包括研究生水平的课程开发和实践经验,为本科生在设计和部署传感器网络。相互作用的线性系统之间的动态关系可以通过一个有向图与关联的边缘传递函数建模。在过去的十年中,丰富的方法,确定图形结构以及传递函数的集合已经设计出来。然而,在确定交互拓扑结构的领域中,缺乏方法来解释和量化由于几种常见类型的数据损坏(例如传感器噪声、时间戳不准确或数据包丢失)而引入的错误的程度。利用估计理论和图论的技术,本项目将描述损坏的数据流可能导致的网络识别和估计算法的退化。特别是,它将展示如果应用现有算法而不考虑数据损坏,损坏的数据如何导致虚假关系的预测。此外,这项工作将描述当多个数据流被破坏时,这些虚假关系如何通过网络传播。为了纠正这种情况,这项工作将展示高保真传感器的战略布局如何定位损坏数据的影响。对于电网和物联网网络等工程系统,这项工作将导致设计网络的方法,这些网络对数据损坏具有弹性。这些方法的理论分析将伴随着模拟,以及在执行分布式传感和计算的测试平台上进行的实验。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trading-Off Static and Dynamic Regret in Online Least-Squares and Beyond
  • DOI:
    10.1609/aaai.v34i04.6149
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianjun Yuan;Andrew G. Lamperski
  • 通讯作者:
    Jianjun Yuan;Andrew G. Lamperski
Effects of Data Corruption on Network Identification using Directed Information
数据损坏对使用定向信息进行网络识别的影响
  • DOI:
    10.1109/tac.2021.3093301
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Subramanian, Venkat Ram;Lamperski, Andrew;Salapaka, Murti V.
  • 通讯作者:
    Salapaka, Murti V.
Topology Learning of Linear Dynamical Systems With Latent Nodes Using Matrix Decomposition
  • DOI:
    10.1109/tac.2021.3124979
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    M. S. Veedu;Harish Doddi;M. Salapaka
  • 通讯作者:
    M. S. Veedu;Harish Doddi;M. Salapaka
Projected Stochastic Gradient Langevin Algorithms for Constrained Sampling and Non-Convex Learning
  • DOI:
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew G. Lamperski
  • 通讯作者:
    Andrew G. Lamperski
Network Structure Identification from Corrupt Data Streams
从损坏的数据流中识别网络结构
  • DOI:
    10.1109/tac.2020.3040952
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Subramanian, Venkat Ram;Lamperski, Andrew;Salapaka, Murti V.
  • 通讯作者:
    Salapaka, Murti V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Lamperski其他文献

Andrew Lamperski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Lamperski', 18)}}的其他基金

Mechanics-Based Algorithms for Sampling, Control, and Learning in Non-Convex Domains
基于力学的非凸域采样、控制和学习算法
  • 批准号:
    2122856
  • 财政年份:
    2021
  • 资助金额:
    $ 55.71万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

A task dynamic approach to prosodic strength relations (TARE)
韵律强度关系的任务动态方法(TARE)
  • 批准号:
    495931197
  • 财政年份:
    2022
  • 资助金额:
    $ 55.71万
  • 项目类别:
    WBP Fellowship
To what extent do the EU's relations with the BSEC foster a dynamic of pluralistic regional cooperation in the Black Sea region? A case-study analysis
欧盟与黑海经合组织的关系在多大程度上促进了黑海地区多元化区域合作的活力?
  • 批准号:
    2273114
  • 财政年份:
    2019
  • 资助金额:
    $ 55.71万
  • 项目类别:
    Studentship
Dynamic relations between values and consumer behaviour: age and life-stage
价值观与消费者行为之间的动态关系:年龄和生命阶段
  • 批准号:
    LP150100434
  • 财政年份:
    2016
  • 资助金额:
    $ 55.71万
  • 项目类别:
    Linkage Projects
Label-free investigation of structure-dynamic relations of single membrane receptors using a tip-enhanced Raman scattering approach (A02)
使用尖端增强拉曼散射方法对单膜受体的结构动态关系进行无标记研究 (A02)
  • 批准号:
    279180144
  • 财政年份:
    2015
  • 资助金额:
    $ 55.71万
  • 项目类别:
    CRC/Transregios
Dynamic Relations among Universities, Boards of Education and Test Industries: focusing on the marketing-orientation in teacher recruitment
大学、教委、考试行业的动态关系:聚焦教师招聘的市场化
  • 批准号:
    23653273
  • 财政年份:
    2011
  • 资助金额:
    $ 55.71万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
RI: Small: Interpreting Linguistic Spatiotemporal Relations in Static and Dynamic Contexts
RI:小:解释静态和动态上下文中的语言时空关系
  • 批准号:
    1017765
  • 财政年份:
    2010
  • 资助金额:
    $ 55.71万
  • 项目类别:
    Standard Grant
Relations between characteristic features of biological dynamic pathway models and gene polymorphisms or gene functions
生物动态途径模型的特征与基因多态性或基因功能之间的关系
  • 批准号:
    21310132
  • 财政年份:
    2009
  • 资助金额:
    $ 55.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Failure Analysis of Complex Systems with Dynamic Functional Relations
具有动态功能关系的复杂系统的失效分析
  • 批准号:
    19510170
  • 财政年份:
    2007
  • 资助金额:
    $ 55.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Viscosities and other dynamic properties of ionic liquids by molecular dynamics simulations and structure-properts relations
通过分子动力学模拟和结构-性质关系研究离子液体的粘度和其他动态性质
  • 批准号:
    28424076
  • 财政年份:
    2006
  • 资助金额:
    $ 55.71万
  • 项目类别:
    Priority Programmes
DYNAMIC MODELS FOR LATENCY ACCURACY RELATIONS IN MEMORY
内存中延迟精度关系的动态模型
  • 批准号:
    6538935
  • 财政年份:
    2001
  • 资助金额:
    $ 55.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了