Collaborative Research: CISE-ANR: CNS Core: Small: Modeling Modern Network Traffic: From Data Representation to Automated Machine Learning

合作研究:CISE-ANR:CNS 核心:小型:现代网络流量建模:从数据表示到自动化机器学习

基本信息

  • 批准号:
    2124393
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

To successfully maintain and secure communications networks, operators need to monitor their behavior and investigate security, performance, and other problems as they arise. Recent advances in network protocols and applications present fundamental challenges for monitoring network traffic. Specifically, Internet traffic, from web traffic to Domain Name System (DNS) queries and responses, is becoming ubiquitously encrypted, obfuscating information that might otherwise be available for these tasks. Additionally, network traffic is increasing in volume and rate, precluding detailed logging and analyzing individual packets or streams. Finally, the Internet is becoming more centralized, and many services have also become cloud-based, making it more difficult to identify applications or services according to fixed identifiers such as IP addresses and port numbers. Answering even basic questions about Internet traffic has thus become increasingly challenging. This project seeks to develop techniques to regain visibility and insights into modern network traffic considering these trends. We address three research questions towards regaining visibility into modern network traffic. First, this project will study how to represent traffic data in ways that are amenable to modeling, and that could optimize models for both supervised and unsupervised modeling tasks. We will explore the impact of representations across four dimensions: (1) timeseries representations; (2) representations across flows; (3) representations at higher layers; and (4) operations on compressed data. Second, we will build on our work on traffic data representation to develop a set of tools to automatically explore model and traffic representations tailored for network traffic problems. Towards this goal, we will build a large-scale repository of labeled flows across several different applications and services as well as evaluate data representations that will be used to build statistical learning models about network traffic. Finally, we will use the software platforms and algorithms we build to design new techniques and tools for operators to solve the challenges that prevent them from transferring developed models from laboratory experiments to real-world deployments. We will extend automated model selection to account for systems costs and real-world limitations; address the need to be able to determine when models become inaccurate and to distinguish model inaccuracies from problems that are inherent to the network; and improve model robustness by investigating general approaches for model transfer. All software we create in this project will be publicly available and open source. Additionally, we plan to integrate the software systems into tutorials for the community, undergraduate and graduate courses, and outreach and education programs in the community, in collaboration with partners such as the University of Chicago's Office of Special Programs and Office of Civic Engagement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了成功维护和保护通信网络,运营商需要监控其行为,并在出现安全性、性能和其他问题时进行调查。网络协议和应用的最新进展为监控网络流量提出了根本性的挑战。具体而言,互联网流量,从Web流量到域名系统(DNS)查询和响应,正在变得无处不在地加密,混淆了原本可能用于这些任务的信息。 此外,网络流量的数量和速率都在增加,无法详细记录和分析单个数据包或数据流。最后,互联网变得越来越集中,许多服务也变得基于云,这使得根据固定标识符(如IP地址和端口号)识别应用程序或服务变得更加困难。 因此,即使是关于互联网流量的基本问题也变得越来越具有挑战性。该项目旨在开发技术,以重新获得对考虑这些趋势的现代网络流量的可见性和洞察力。 我们解决三个研究问题,以恢复到现代网络流量的可见性。首先,该项目将研究如何以适合建模的方式表示交通数据,并且可以优化有监督和无监督建模任务的模型。我们将探讨表示在四个维度上的影响:(1)时间序列表示;(2)跨流表示;(3)更高层表示;(4)压缩数据上的操作。 其次,我们将在流量数据表示的基础上开发一套工具,用于自动探索为网络流量问题量身定制的模型和流量表示。为了实现这一目标,我们将在几个不同的应用程序和服务中构建一个大规模的标记流存储库,并评估用于构建网络流量统计学习模型的数据表示。最后,我们将使用我们构建的软件平台和算法为运营商设计新的技术和工具,以解决阻止他们将开发的模型从实验室实验转移到现实世界部署的挑战。我们将扩展自动模型选择,以考虑系统成本和现实世界的限制;解决需要能够确定模型何时变得不准确,并将模型不准确与网络固有的问题区分开来;并通过研究模型转移的一般方法来提高模型的鲁棒性。 我们在这个项目中创建的所有软件都将是公开的和开源的。此外,我们计划将软件系统集成到社区教程、本科生和研究生课程以及社区的推广和教育计划中,与芝加哥大学特别项目办公室和公民参与办公室等合作伙伴合作。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的评估来支持。影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LEAF: A Faster Secure Search Algorithm via Localization, Extraction, and Reconstruction
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Feamster其他文献

Nicholas Feamster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Feamster', 18)}}的其他基金

Collaborative Research: IMR: MM-1A: Measuring Internet Access Networks Across Space and Time
合作研究:IMR:MM-1A:跨空间和时间测量互联网接入网络
  • 批准号:
    2319603
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Understanding Practical Deployment Considerations for Decentralized, Encrypted DNS
SaTC:核心:小型:了解去中心化加密 DNS 的实际部署注意事项
  • 批准号:
    2155128
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
IMR: MT: A Community Platform for Controlled Experiments on Internet Access Networks
IMR:MT:互联网接入网络受控实验的社区平台
  • 批准号:
    2223610
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Training Mid-Career Security Professionals in Machine Learning and Data-Driven Cybersecurity
EAGER:SaTC-EDU:在机器学习和数据驱动的网络安全方面培训职业中期安全专业人员
  • 批准号:
    2041970
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RAPID: Measuring the Effects of the COVID-19 Pandemic on Broadband Access Networks to Inform Robust Network Design
RAPID:测量 COVID-19 大流行对宽带接入网络的影响,为稳健的网络设计提供信息
  • 批准号:
    2028145
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CPS: Medium: Detecting and Controlling Unwanted Data Flows in the Internet of Things
CPS:中:检测和控制物联网中不需要的数据流
  • 批准号:
    1953740
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Cooperative Agreement
TWC: TTP Option: Large: Collaborative: Towards a Science of Censorship Resistance
TWC:TTP 选项:大:协作:走向审查制度抵抗的科学
  • 批准号:
    1953513
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Workshop on Self-Driving Networks
自动驾驶网络研讨会
  • 批准号:
    1953515
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CPS: Medium: Detecting and Controlling Unwanted Data Flows in the Internet of Things
CPS:中:检测和控制物联网中不需要的数据流
  • 批准号:
    1739809
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Cooperative Agreement
Workshop on Self-Driving Networks
自动驾驶网络研讨会
  • 批准号:
    1748793
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
  • 批准号:
    2321492
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
  • 批准号:
    2321531
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
  • 批准号:
    2318593
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
  • 批准号:
    2318592
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
  • 批准号:
    2318703
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
  • 批准号:
    2321490
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
  • 批准号:
    2321532
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE: Large: Systems Support for Run-Anywhere Serverless
协作研究:CISE:大型:对 Run-Anywhere Serverless 的系统支持
  • 批准号:
    2321725
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
  • 批准号:
    2318696
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: OAC: Integrated and Extensible Platform for Rethinking the Security of AI-assisted UAV Paradigm
合作研究:CISE-MSI:DP:OAC:重新思考人工智能辅助无人机范式安全性的集成和可扩展平台
  • 批准号:
    2318711
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了