CPS: Medium: Detecting and Controlling Unwanted Data Flows in the Internet of Things
CPS:中:检测和控制物联网中不需要的数据流
基本信息
- 批准号:1739809
- 负责人:
- 金额:$ 92.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many emerging Internet-connected devices are not personal computers. They are special-purpose commodity consumer electronic devices such as, for example, smart thermostats and smart door locks. Collectively, these devices are known as the Internet of Things (IoT). They are increasingly used in smart homes, smart cities, intelligent transportation systems, industrial networks and more. The promise of IoT is to improve the quality of everyday life and make society more productive.IoT devices however are not without technological and societal risk. The technological risk derives in part from software and security vulnerabilities. The vast diversity and number of IoT devices make overall consistency problematic and contribute to various inefficiencies. There are risks over the life cycle of some deployed IoT devices that their software may never be patched and their hardware never repaired; i.e., these devices will effectively remain vulnerable indefinitely. The societal risk derives in part from the massive data that is now possible to collect using IoT devices from most anywhere, which violate privacy norms. Moreover, compromised IoT devices might serve as a large-scale highly distributed platform to flood the Internet, disrupting many vital services for society.This project develops technologies that ensure that IoT deployments remain secure and protect user privacy in the face of the widespread deployment of connected smart devices. Network-based defenses against common attacks and device owners' ability to inspect, audit, control and share data are essential capabilities to mitigating technological and societal risks. This project focuses: (1) protecting the devices from vulnerabilities that are often introduced through the use of untrusted software libraries, (2) detecting when devices exhibit anomalous behavior that would suggest an unauthorized data leak or device compromise, relying on statistical anomaly detection of network traffic patterns, and (3) controlling unwanted data leaks and attacks in the network using network firewall rules, outputs from these anomaly detection systems, and software systems that let the owners of these devices inspect and determine the data sent and received. This project advances the theory and practice of network traffic analysis, anomaly detection, and secure segmentation of networks that ensure IoT deployments remain secure despite insecure connected devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多新兴的互联网连接设备不是个人电脑。它们是特殊用途的商品消费电子设备,例如智能恒温器和智能门锁。总的来说,这些设备被称为物联网(IoT)。 它们越来越多地用于智能家居、智能城市、智能交通系统、工业网络等领域。物联网的承诺是改善日常生活质量,提高社会生产力。然而,物联网设备并非没有技术和社会风险。 技术风险部分来自软件和安全漏洞。 物联网设备的多样性和数量使得整体一致性存在问题,并导致各种效率低下。在一些部署的物联网设备的生命周期中存在风险,即它们的软件可能永远不会打补丁,它们的硬件永远不会修复;即,这些设备实际上将无限期地保持脆弱。 社会风险部分源于现在可以使用物联网设备从大多数地方收集的大量数据,这些数据违反了隐私规范。此外,受感染的物联网设备可能会成为一个大规模的高度分布式平台,充斥互联网,破坏社会的许多重要服务。该项目开发的技术,确保物联网部署保持安全,并在面对广泛部署的连接智能设备时保护用户隐私。针对常见攻击的基于网络的防御以及设备所有者检查、审计、控制和共享数据的能力是减轻技术和社会风险的基本能力。 该项目的重点是:(1)保护设备免受经常通过使用不可信软件库而引入的漏洞的影响,(2)依靠网络业务模式的统计异常检测来检测设备何时表现出将暗示未授权数据泄漏或设备危害的异常行为,以及(3)使用网络防火墙规则来控制网络中的不想要的数据泄漏和攻击,来自这些异常检测系统的输出,以及让这些设备的所有者检查和确定发送和接收的数据的软件系统。 该项目推进了网络流量分析、异常检测和网络安全分段的理论和实践,确保物联网部署在连接设备不安全的情况下仍然保持安全。该奖项反映了NSF的法定使命,并通过使用该基金会的知识产权进行评估而被认为值得支持优点和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alexa, Who Am I Speaking To?: Understanding Users’ Ability to Identify Third-Party Apps on Amazon Alexa
- DOI:10.1145/3446389
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:David J. Major;D. Huang;M. Chetty;N. Feamster
- 通讯作者:David J. Major;D. Huang;M. Chetty;N. Feamster
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Feamster其他文献
Nicholas Feamster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Feamster', 18)}}的其他基金
Collaborative Research: IMR: MM-1A: Measuring Internet Access Networks Across Space and Time
合作研究:IMR:MM-1A:跨空间和时间测量互联网接入网络
- 批准号:
2319603 - 财政年份:2023
- 资助金额:
$ 92.38万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Understanding Practical Deployment Considerations for Decentralized, Encrypted DNS
SaTC:核心:小型:了解去中心化加密 DNS 的实际部署注意事项
- 批准号:
2155128 - 财政年份:2022
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant
IMR: MT: A Community Platform for Controlled Experiments on Internet Access Networks
IMR:MT:互联网接入网络受控实验的社区平台
- 批准号:
2223610 - 财政年份:2022
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant
Collaborative Research: CISE-ANR: CNS Core: Small: Modeling Modern Network Traffic: From Data Representation to Automated Machine Learning
合作研究:CISE-ANR:CNS 核心:小型:现代网络流量建模:从数据表示到自动化机器学习
- 批准号:
2124393 - 财政年份:2021
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Training Mid-Career Security Professionals in Machine Learning and Data-Driven Cybersecurity
EAGER:SaTC-EDU:在机器学习和数据驱动的网络安全方面培训职业中期安全专业人员
- 批准号:
2041970 - 财政年份:2020
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant
RAPID: Measuring the Effects of the COVID-19 Pandemic on Broadband Access Networks to Inform Robust Network Design
RAPID:测量 COVID-19 大流行对宽带接入网络的影响,为稳健的网络设计提供信息
- 批准号:
2028145 - 财政年份:2020
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant
CPS: Medium: Detecting and Controlling Unwanted Data Flows in the Internet of Things
CPS:中:检测和控制物联网中不需要的数据流
- 批准号:
1953740 - 财政年份:2019
- 资助金额:
$ 92.38万 - 项目类别:
Cooperative Agreement
TWC: TTP Option: Large: Collaborative: Towards a Science of Censorship Resistance
TWC:TTP 选项:大:协作:走向审查制度抵抗的科学
- 批准号:
1953513 - 财政年份:2019
- 资助金额:
$ 92.38万 - 项目类别:
Continuing Grant
相似海外基金
SaTC: CORE: Medium: After the Breach: Detecting Lateral Movement, Reconnaissance, and Exfiltration in Enterprise Networks
SaTC:核心:中:违规后:检测企业网络中的横向移动、侦察和渗透
- 批准号:
2152644 - 财政年份:2022
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Detecting and Controlling Network-based Spread of Hospital Acquired Infections
III:媒介:合作研究:检测和控制医院获得性感染的网络传播
- 批准号:
1955797 - 财政年份:2020
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Detecting and Controlling Network-based Spread of Hospital Acquired Infections
III:媒介:合作研究:检测和控制医院获得性感染的网络传播
- 批准号:
1955883 - 财政年份:2020
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Detecting and Controlling Network-based Spread of Hospital Acquired Infections
III:媒介:合作研究:检测和控制医院获得性感染的网络传播
- 批准号:
1955939 - 财政年份:2020
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant
CPS: Medium: Detecting and Controlling Unwanted Data Flows in the Internet of Things
CPS:中:检测和控制物联网中不需要的数据流
- 批准号:
1953740 - 财政年份:2019
- 资助金额:
$ 92.38万 - 项目类别:
Cooperative Agreement
III: Medium: Detecting Low Dimensional Structures in Genomic Data
III:中:检测基因组数据中的低维结构
- 批准号:
1705197 - 财政年份:2017
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Detecting and Localizing Spectrum Offenders Using Crowdsourcing
NeTS:媒介:协作研究:使用众包检测和定位频谱违规者
- 批准号:
1563928 - 财政年份:2016
- 资助金额:
$ 92.38万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Detecting and Localizing Spectrum Offenders Using Crowdsourcing
NeTS:媒介:协作研究:使用众包检测和定位频谱违规者
- 批准号:
1564287 - 财政年份:2016
- 资助金额:
$ 92.38万 - 项目类别:
Continuing Grant
CSR: Medium: Highly Scalable and Accurate System Support for Detecting Misbehaving Users and Mitigating Criminal Activities in Realtime Online Video-Based Services
CSR:中:高度可扩展且准确的系统支持,用于检测行为不当的用户并减少实时在线视频服务中的犯罪活动
- 批准号:
1162614 - 财政年份:2012
- 资助金额:
$ 92.38万 - 项目类别:
Continuing Grant
SHF: Medium: RacePro: Automatically Detecting API Races in Deployed Systems
SHF:中:RacePro:自动检测已部署系统中的 API 竞争
- 批准号:
1162021 - 财政年份:2012
- 资助金额:
$ 92.38万 - 项目类别:
Standard Grant