Workshop on Self-Driving Networks

自动驾驶网络研讨会

基本信息

  • 批准号:
    1953515
  • 负责人:
  • 金额:
    $ 1.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This workshop brings together leading researchers from a range of disciplines across computer science to define a new research agenda in network measurement and data analytics with the goal of exploring how to design networks that manage themselves. These experts will explore taking advantage of advances in disciplines including machine learning, distributed systems, and formal methods to address growing requirements and constraints of modern networking applications. Because of the proliferation of applications and services that now run over the Internet ranging from video streaming to Internet-connected smart home devices to augmented reality---the expectations for the performance, reliability, and security of our communications networks are greater than ever, as the number and diversity of applications that run on top of the network continue to proliferate, and as the volume of traffic on the network continues to grow. To meet these expectations, network operators work tirelessly to continuously collect troves of heterogeneous data from the network, analyze this data to infer characteristics about the network, and decide whether to change the network's configuration in response to network conditions (e.g., a shift in traffic demand or a cyber attack). Today, these three steps are decoupled: operators perform them separately, on different timescales, often in a slow or manual fashion that relies on intuition, as opposed to data, analysis, and inference. The vision for this workshop is that networks might one day be able to largely manage themselves through a combination of query-driven network measurement, automated inference techniques, and programmatic control. Intellectual Merit: The research agenda lends itself to research problems that will foster advances in computer science, including the following areas: 1. Distributed systems that optimize the use of limited resources for complex tasks, including support for multiple simultaneous queries; New architectures to support programmable measurement in hardware; Algorithms that partition a network analytics query across a centralized stream processor and the distributed switches and network middleboxes. 2. New measurement techniques (beyond "ping" and "traceroute") that leverage the capabilities of P4-capable data planes (e.g., in-band telemetry); Software/hardware co-design for better network measurements; Clean-slate, problem-driven designs for new network measurement tools that might tackle problems in network measurement that have proved evasive (e.g., application quality of experience); Measurement of unified compute, storage, and networking infrastructure, including monitoring of container-based systems 3. Machine Learning and new algorithms for automated troubleshooting and "what-if" scenario evaluation; Development of parsimonious models that could be implemented (at least partially) at line rate on switch hardware; Prediction and inference over non-stationary datasets to changing traffic patterns. 4. Security and privacy through scalable algorithms and systems for detecting a broad range of attacks, from denial of service to data exfiltration; Better ways to monitor application performance without having to perform man-in-the-middle attacks on traffic. Broader Impacts: Results from this workshop will be broadly distributed so that researchers in all of the areas noted above will benefit from the discussions, conclusions and recommendations resulting from the workshop. Research inspired by the workshop could have broad societal impacts by helping network operators envision how to integrate measurement, data analysis, and configuration decisions and move toward automated network control.
该研讨会汇集了来自计算机科学各个学科的领先研究人员,以确定网络测量和数据分析的新研究议程,旨在探索如何设计能够自我管理的网络。这些专家将探索利用包括机器学习、分布式系统和正式方法在内的学科的进步来解决现代网络应用日益增长的需求和限制。由于现在在互联网上运行的应用程序和服务的激增,从视频流到互联网连接的智能家居设备再到增强现实-对我们通信网络的性能、可靠性和安全性的期望比以往任何时候都要高,因为在网络上运行的应用程序的数量和多样性继续激增,并且随着网络上的业务量持续增长。为了满足这些期望,网络运营商不知疲倦地工作以从网络连续地收集异构数据的宝库,分析该数据以推断关于网络的特性,并且决定是否响应于网络条件(例如,流量需求的变化或网络攻击)。今天,这三个步骤是解耦的:运营商在不同的时间尺度上分别执行它们,通常是以缓慢或手动的方式,依赖于直觉,而不是数据,分析和推理。本次研讨会的愿景是,网络有一天可能能够通过查询驱动的网络测量,自动推理技术和编程控制的组合在很大程度上管理自己。智力优势:研究议程本身的研究问题,将促进计算机科学的进步,包括以下领域:1。分布式系统,优化有限资源的使用,以完成复杂任务,包括支持多个并发查询;支持硬件可编程测量的新架构;在集中式流处理器和分布式交换机和网络中间盒上划分网络分析查询的算法。2.新的测量技术(除了“ping”和“traceroute”),它利用了支持P4的数据平面的能力(例如,带内遥测);软件/硬件协同设计,以实现更好的网络测量;全新的、问题驱动的设计,用于新的网络测量工具,这些工具可能解决网络测量中被证明是回避的问题(例如,应用体验质量);统一计算、存储和网络基础设施的测量,包括基于容器的系统的监控3.机器学习和用于自动故障排除和“假设”场景评估的新算法;开发可以在交换机硬件上以线速实现(至少部分)的简约模型;对非静态数据集进行预测和推断,以改变流量模式。4.通过可扩展的算法和系统来检测从拒绝服务到数据泄露的各种攻击,从而实现安全性和隐私性;更好地监控应用程序性能,而无需对流量执行中间人攻击。更广泛的影响:讲习班的成果将广泛分发,以便上述所有领域的研究人员都能从讲习班的讨论、结论和建议中受益。 研讨会启发的研究可以通过帮助网络运营商设想如何集成测量,数据分析和配置决策并向自动化网络控制迈进,从而产生广泛的社会影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Feamster其他文献

Nicholas Feamster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Feamster', 18)}}的其他基金

Collaborative Research: IMR: MM-1A: Measuring Internet Access Networks Across Space and Time
合作研究:IMR:MM-1A:跨空间和时间测量互联网接入网络
  • 批准号:
    2319603
  • 财政年份:
    2023
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Understanding Practical Deployment Considerations for Decentralized, Encrypted DNS
SaTC:核心:小型:了解去中心化加密 DNS 的实际部署注意事项
  • 批准号:
    2155128
  • 财政年份:
    2022
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Standard Grant
IMR: MT: A Community Platform for Controlled Experiments on Internet Access Networks
IMR:MT:互联网接入网络受控实验的社区平台
  • 批准号:
    2223610
  • 财政年份:
    2022
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-ANR: CNS Core: Small: Modeling Modern Network Traffic: From Data Representation to Automated Machine Learning
合作研究:CISE-ANR:CNS 核心:小型:现代网络流量建模:从数据表示到自动化机器学习
  • 批准号:
    2124393
  • 财政年份:
    2021
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Training Mid-Career Security Professionals in Machine Learning and Data-Driven Cybersecurity
EAGER:SaTC-EDU:在机器学习和数据驱动的网络安全方面培训职业中期安全专业人员
  • 批准号:
    2041970
  • 财政年份:
    2020
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Standard Grant
RAPID: Measuring the Effects of the COVID-19 Pandemic on Broadband Access Networks to Inform Robust Network Design
RAPID:测量 COVID-19 大流行对宽带接入网络的影响,为稳健的网络设计提供信息
  • 批准号:
    2028145
  • 财政年份:
    2020
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Standard Grant
CPS: Medium: Detecting and Controlling Unwanted Data Flows in the Internet of Things
CPS:中:检测和控制物联网中不需要的数据流
  • 批准号:
    1953740
  • 财政年份:
    2019
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Cooperative Agreement
TWC: TTP Option: Large: Collaborative: Towards a Science of Censorship Resistance
TWC:TTP 选项:大:协作:走向审查制度抵抗的科学
  • 批准号:
    1953513
  • 财政年份:
    2019
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Continuing Grant
CPS: Medium: Detecting and Controlling Unwanted Data Flows in the Internet of Things
CPS:中:检测和控制物联网中不需要的数据流
  • 批准号:
    1739809
  • 财政年份:
    2018
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Cooperative Agreement
Workshop on Self-Driving Networks
自动驾驶网络研讨会
  • 批准号:
    1748793
  • 财政年份:
    2017
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
  • 批准号:
    82371813
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
  • 批准号:
    32302161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Self-shrinkers的刚性及相关问题
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
基于Self-peptide和Fe5C2构建的高敏感MR分子探针对肿瘤血管的MR靶向成像研究
  • 批准号:
    81501521
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
平均曲率流中非紧Self-shrinkers的结构
  • 批准号:
    11301190
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
2维伪欧氏空间下平均曲率流中Self-shrinker问题的研究
  • 批准号:
    11126152
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
成束蛋白Fascin1在肺癌"self-seeding"过程中的作用及机制研究
  • 批准号:
    81001041
  • 批准年份:
    2010
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
工业用腈水合酶全新蛋白质翻译后调节体系self-subunit swapping的研究
  • 批准号:
    31070711
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Standard Grant
Near-infrared GaN quantum cascade laser for the next-generation self-driving car
用于下一代自动驾驶汽车的近红外GaN量子级联激光器
  • 批准号:
    23K20955
  • 财政年份:
    2024
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conference: Workshop to Build a Vision and Strategy for Creating a National Network of Academic Cloud and Self-Driving Labs
会议:构建创建全国学术云和自动驾驶实验室网络的愿景和战略的研讨会
  • 批准号:
    2335891
  • 财政年份:
    2023
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
  • 批准号:
    2247880
  • 财政年份:
    2023
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Continuing Grant
AUTOTRACT - Development of interoperable, low-cost, 'self-driving' software platform for tractor manufacturers
AUTOTRACT - 为拖拉机制造商开发可互操作、低成本的“自动驾驶”软件平台
  • 批准号:
    10057982
  • 财政年份:
    2023
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Collaborative R&D
Self-driving laboratories for autonomous exploration of protein sequence space
用于自主探索蛋白质序列空间的自动驾驶实验室
  • 批准号:
    10717598
  • 财政年份:
    2023
  • 资助金额:
    $ 1.99万
  • 项目类别:
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
  • 批准号:
    2247881
  • 财政年份:
    2023
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
  • 批准号:
    2335910
  • 财政年份:
    2023
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
  • 批准号:
    2335909
  • 财政年份:
    2023
  • 资助金额:
    $ 1.99万
  • 项目类别:
    Standard Grant
Disrupting the UK inertial sensor supply chain to increase resilience and safety for self-driving vehicles
颠覆英国惯性传感器供应链,提高自动驾驶车辆的弹性和安全性
  • 批准号:
    10065170
  • 财政年份:
    2023
  • 资助金额:
    $ 1.99万
  • 项目类别:
    BEIS-Funded Programmes
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了