SCC-PG: Using Innovations in Sensing, Data Analytics, and Community Engagement to Address Opioid Overdose Crisis
SCC-PG:利用传感、数据分析和社区参与方面的创新来解决阿片类药物过量危机
基本信息
- 批准号:2125430
- 负责人:
- 金额:$ 14.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Opioid overdose is now the leading cause of death for those under 50 in the USA. Cities have followed different strategies to address this problem through various education/training programs. However, the growing scale of the opioid overdose crisis in the USA indicates that more effective data-driven approaches are needed. Opioid abuse and overdose have been identified as a leading method of premature death in the Richmond Region, Virginia. Inadequate data is a major issue for city officials, which prevents them from investigating the scale of the opioid epidemic. Since locality’s economic competitiveness and their ability to recruit businesses and labor are dependent on the image they portray, the data sharing and further analytics in opioid overdoses have seen limited improvement. To this end, this planning project proposes to build a team of researchers and local stakeholders - including those in the leadership roles in all cities and counties in the Richmond Region. The team will work towards a data-driven understanding of the problem and community-involved solutions to address the issue. As responses to the opioid problem are common to other metro regions in the U.S., we hope to scale the model to be exercised in other regions. This project aims to harness the power of data analytics and smart technologies to develop creative solutions for efficient decision-making and planning to improve public health and living standards. Direct broader impacts include evidence-based factors that enhance and impair community responses to the opioid epidemic that can be discussed and refined with community members to drive change, and accordingly, reduce opioid overdose and health inequities across the region.From the technical perspectives, this project will investigate novel data-driven approaches to treatment policies that can be supported by the community. The intellectual merit of this work includes: (1) developing a fundamental understanding of challenges facing communities due to opioid epidemics, (2) developing a better understanding of the relationship between governance, smart cities, and social innovation, particularly for addressing the opioid problem, (3) collecting relevant types of drug use data in the community, (4) deriving prediction models based on the available data from different sources, and (5) developing smart sensing solutions to accurately monitor and assess the state of drug abuse. Accordingly, this project aims to establish interdisciplinary efforts to develop a data-driven intervention in addressing the opioid overdose crisis, in coordination with community representatives to identify and assess applicable approaches. The team will investigate several predictive models for forecasting drug use/overdoses by considering diverse data on drug-related incidents. The project will also investigate Explainable Machine Learning techniques that will be coupled with developed data-driven models in order to provide estimations of drug use with an explanation of the important factors that justify the predictions made by the model. This will help identify the root causes and the extent of their impact.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
阿片类药物过量现在是美国50岁以下的人的主要死亡原因。城市已经遵循不同的策略,通过各种教育/培训计划来解决此问题。但是,美国阿片类药物过量危机的日益扩展表明需要更有效的数据驱动方法。在弗吉尼亚州里士满地区,阿片类药物滥用和过量用药被确定为早产的主要方法。对于城市官员来说,数据不足是一个主要问题,这阻止了他们研究阿片类药物流行的规模。由于当地的经济竞争力及其招募企业和劳动力的能力取决于它们所描绘的形象,因此阿片类药物过量服用的数据共享和进一步的分析有限。为此,这项计划项目的建议旨在建立一个研究人员和当地利益相关者,包括里士满地区所有城市和县的领导职务。该团队将致力于对问题和社区涉及解决方案的数据驱动理解,以解决该问题。由于对美国其他地铁地区对阿片类药物问题的反应是在其他地区进行的。该项目旨在利用数据分析和智能技术的力量,以开发有效决策和计划以提高公共卫生和生活水平的创造性解决方案。直接广播公司的影响包括基于证据的因素,可以增强和损害社区对阿片类药物流行病的反应,可以与社区成员讨论和完善社区成员以驱动变革,并减少阿片类药物的过量和健康不平等。从技术角度来看,从技术角度来看,该项目将调查可以由社区支持的新颖数据驱动方法来支持社区。这项工作的智力优点包括:(1)对由于阿片类型事件引起的社区面临的挑战发展基本理解,(2)对治理,智能城市和社会创新之间的关系有了更好的了解,尤其是针对阿片类药物问题,尤其是针对社区中的智能数据,以及(4)从智能数据中收集不同的预测类型,(4)(4)(4)(4)(4)评估药物滥用状态。根据该项目的说法,旨在建立跨学科的努力,以与代表和评估适用方法的社区协调,以解决阿片类药物过量危机以解决阿片类药物过量危机。该团队将通过考虑潜水员在与药物有关的事件上的数据进行研究,以研究一些预测药物使用/过量的预测模型。该项目还将调查可解释的机器学习技术,这些技术将与开发的数据驱动模型相结合,以提供对药物使用的估算,并解释重要因素,以证明该模型的预测是合理的。这将有助于确定根本原因及其影响的程度。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估,被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sherif Abdelwahed其他文献
An integrated lookahead control-based adaptive supervisory framework for autonomic power system applications
- DOI:
10.1016/j.ijepes.2014.06.033 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:
- 作者:
Ranjit Amgai;Jian Shi;Sherif Abdelwahed - 通讯作者:
Sherif Abdelwahed
Robust Diagnosis of Switching Systems
- DOI:
10.1016/s1474-6670(17)36585-0 - 发表时间:
2003-06-01 - 期刊:
- 影响因子:
- 作者:
Sherif Abdelwahed;Gabor Karsai;Gautam Biswas - 通讯作者:
Gautam Biswas
Sherif Abdelwahed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sherif Abdelwahed', 18)}}的其他基金
SCC-PG: Sustainable Food Access through Sensing, Data Analytics, and Community Engagement
SCC-PG:通过传感、数据分析和社区参与实现可持续食品获取
- 批准号:
1952169 - 财政年份:2020
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
SoD-TEAM: Design for Adaptivity and Reliable Operation of Software Intensive Systems
SoD-TEAM:软件密集型系统的适应性和可靠运行设计
- 批准号:
0804230 - 财政年份:2007
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
SoD-TEAM: Design for Adaptivity and Reliable Operation of Software Intensive Systems
SoD-TEAM:软件密集型系统的适应性和可靠运行设计
- 批准号:
0613971 - 财政年份:2006
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
相似国自然基金
多尺度非均匀网格反演策略下的壳幔Pn/Pg波速度与各向异性成像方法及在西北太平洋俯冲带地区的应用
- 批准号:42274074
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
构建多模式生物复合纳米释药体系Bac@HMRu-PG实现肿瘤充分给药及其协同抗肿瘤作用
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
构建多模式生物复合纳米释药体系Bac@HMRu-PG实现肿瘤充分给药及其协同抗肿瘤作用
- 批准号:32171388
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
西秦岭北缘山前带白垩纪/古近纪(K/Pg)构造事件研究
- 批准号:42172238
- 批准年份:2021
- 资助金额:61 万元
- 项目类别:面上项目
虎杖通过肺表面活性脂质PG调控肺泡巨噬细胞抗RSV感染的机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
SCC-PG: Optimizing sociotechnical interventions for healthcare access using community sensing
SCC-PG:利用社区感知优化医疗保健获取的社会技术干预措施
- 批准号:
2334724 - 财政年份:2024
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track A: Full Building Scans for Targeted Micro-retrofits using Drones, Radars, and Deep Learning
SCC-CIVIC-PG 轨道 A:使用无人机、雷达和深度学习进行全面建筑扫描以进行有针对性的微型改造
- 批准号:
2228568 - 财政年份:2022
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track A: City of Bridges: Using New Transportation Options to Drive Low-Income Mothers to Greater Success in Pittsburgh
SCC-CIVIC-PG 轨道 A:桥梁之城:利用新的交通选择推动低收入母亲在匹兹堡取得更大成功
- 批准号:
2043634 - 财政年份:2021
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
SCC-PG: Enhancing Community Engagement in Flood Mitigation Using Integrated Hydrodynamic Modeling and Multi-Scale Socio-Economic Risk Assessment
SCC-PG:利用综合水动力模型和多尺度社会经济风险评估加强社区参与防洪
- 批准号:
2125472 - 财政年份:2021
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant
SCC-PG: Privacy and Fairness in Planning when using Third-Party, Heterogeneous Data Sources
SCC-PG:使用第三方异构数据源时规划的隐私和公平性
- 批准号:
1951852 - 财政年份:2021
- 资助金额:
$ 14.88万 - 项目类别:
Standard Grant