BCSER: Using Computational Language Processing Techniques to Determine if Parental STEM Language Varies By Child Gender
BCSER:使用计算语言处理技术确定父母的 STEM 语言是否因儿童性别而异
基本信息
- 批准号:2125940
- 负责人:
- 金额:$ 33.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This STEM education research capacity building project combines a research project that investigates whether parents transmit gender stereotypes about STEM to pre-school children in everyday conversations and a detailed professional development plan that enables the principal investigator to develop competencies in computational research methodologies, skill in mentoring junior colleagues, and knowledge of research on the underrepresentation of women in STEM. The research will examine whether parents use more STEM words and topics with boys than girls, providing evidence that parental language may contribute to girls’ underrepresentation in STEM. The project also will develop and test a new research method by using a novel quantitative methodology, computational text analysis. The research project and professional development plan will support a research trajectory aimed at using computational text analysis to examine how variations in parents’ speech impact children’s downstream outcomes, such as scientific thinking and STEM participation using longitudinal research designs. The project will position the investigator to explore potential malleable factors associated with gender differences in STEM outcomes, with the goal of proposing targeted interventions to broaden representation in STEM for all learners.The project will be guided by the sociocultural theory of learning and development, gender schema theory to contextualize why parents may communicate about STEM differently with boys versus girls, and expectancy theory to explain how gender differences in parents’ beliefs and behaviors may impact children’s future STEM motivation and persistence. The investigator will examine three research questions: (1) Are there differences in parents’ use of STEM language based on whether the parent is interacting with their son or daughter? (2) What family characteristics moderate associations between parents’ STEM language and child gender? and (3) How reliable is computational text analysis compared to manual coding approaches for identifying parental STEM language? Videotapes and survey data of demographic constructs, science attitudes, and gender schemas will be collected for 80 families. Transcripts from both sources will be compiled into one corpus for analysis. Computational text analysis will be used to determine whether parents’ use of STEM-related words and topics differ when speaking to their sons versus daughters. The investigator will use the open-source R statistical modeling language to perform the entire text analysis workflow. The research findings will advance core knowledge about the processes underlying how STEM stereotypes are transmitted from parents to young children. This project is supported by the ECR: Building Capacity in STEM Education Research competition of the EHR Core Research (ECR) Program. ECR funds fundamental research focused on STEM learning and learning environments, building capacity in STEM fields, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个STEM教育研究能力建设项目结合了一个研究项目,调查父母是否在日常对话中向学龄前儿童传递关于STEM的性别刻板印象,以及一个详细的专业发展计划,使首席研究员能够发展计算研究方法的能力,指导初级同事的技能,以及对STEM中女性代表性不足的研究知识。 这项研究将检查父母是否使用更多的STEM词汇和主题与男孩比女孩,提供证据表明,父母的语言可能有助于女孩的代表性不足的STEM。 该项目还将开发和测试一种新的研究方法,使用一种新的定量方法,计算文本分析。该研究项目和专业发展计划将支持一个研究轨迹,旨在使用计算文本分析来研究父母言语的变化如何影响儿童的下游结果,例如科学思维和使用纵向研究设计的STEM参与。 该项目将定位研究者探索与STEM成果中的性别差异相关的潜在可塑性因素,目标是提出有针对性的干预措施,以扩大所有学习者在STEM中的代表性。该项目将以学习和发展的社会文化理论,性别图式理论为指导,以了解为什么父母可能与男孩和女孩不同地沟通STEM,和期望理论来解释父母信仰和行为的性别差异如何影响孩子未来的STEM动机和坚持。研究人员将研究三个研究问题:(1)父母是否与儿子或女儿互动,父母使用STEM语言是否存在差异?(2)什么样的家庭特征调节了父母的STEM语言和孩子性别之间的关联?和(3)与人工编码方法相比,计算文本分析在识别父母STEM语言方面的可靠性如何? 录像带和调查数据的人口结构,科学的态度,和性别图式将收集80个家庭。两个来源的成绩单将汇编成一个语料库进行分析。计算文本分析将用于确定父母在与儿子和女儿说话时使用STEM相关词汇和主题是否不同。研究者将使用开源的R统计建模语言来执行整个文本分析工作流程。 研究结果将推进关于STEM刻板印象如何从父母传递给幼儿的过程的核心知识。该项目得到了ECR的支持:EHR核心研究(ECR)计划的STEM教育研究竞争能力建设。ECR资助的基础研究侧重于STEM学习和学习环境,在STEM领域的能力建设,和STEM劳动力发展。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Leech其他文献
Literacy Measures That Leverage the Strengths of Spanish-Speaking Latino Kindergarteners
利用西班牙语拉丁裔幼儿园儿童优势的扫盲措施
- DOI:
10.1177/1086296x231200818 - 发表时间:
2023 - 期刊:
- 影响因子:2.6
- 作者:
Diana Leyva;Gloria Yeomans;Christina Weiland;Anna Shapiro;Kathryn Leech;Isabella Pilot;Sophie Wolf - 通讯作者:
Sophie Wolf
Contextual Modulation of Adult–Child Language Interaction: Semantic Network Connectivity and Children’s Vocabulary Development
成人与儿童语言互动的语境调节:语义网络连接和儿童词汇发展
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
Wonkyung Jang;Kathryn Leech - 通讯作者:
Kathryn Leech
Kathryn Leech的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathryn Leech', 18)}}的其他基金
CAREER: The role of picture books in promoting parent-child scientific conversation and learning
职业:图画书在促进亲子科学对话和学习中的作用
- 批准号:
2339516 - 财政年份:2024
- 资助金额:
$ 33.59万 - 项目类别:
Continuing Grant
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
- 批准号:
2330737 - 财政年份:2024
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
- 批准号:
2338676 - 财政年份:2024
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Empowering Augmented Mobility Of The Aging Population Using Computational Musculoskeletal Simulation
使用计算肌肉骨骼模拟增强老龄化人口的活动能力
- 批准号:
ES/Y008030/1 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Research Grant
Development of Low Power Consumption Multiferroic Memory using Experimental and Computational Approaches
使用实验和计算方法开发低功耗多铁存储器
- 批准号:
23KJ0919 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Characterizing Decision-Making in Anorexia Nervosa Under Conditions of Risk and Ambiguity using Computational Neuroimaging
使用计算神经影像描述神经性厌食症在风险和模糊性条件下的决策特征
- 批准号:
10580198 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
- 批准号:
10757140 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Using advanced genomic and computational approaches to discover and characterize novel genetic variants in neurodevelopmental disorders.
使用先进的基因组和计算方法来发现和表征神经发育障碍中的新遗传变异。
- 批准号:
491213 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Fellowship Programs
Computational fluid dynamics analysis using sophisticated plant models towards the development of digital twins in greenhouse horticulture
使用复杂的植物模型进行计算流体动力学分析,以开发温室园艺中的数字孪生
- 批准号:
23K05477 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Using computational analyses to understand cognitive impairment in multiple sclerosis
使用计算分析来了解多发性硬化症的认知障碍
- 批准号:
2899848 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Studentship
Data models for large aircraft aerodynamics using next-generation computational fluid dynamics
使用下一代计算流体动力学的大型飞机空气动力学数据模型
- 批准号:
2889801 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Studentship