Fundamental Understanding of Amorphization Mechanism and Intermetallic Prevention in Friction-based Solid-state Additive Manufacturing of Aluminum-steel Bimetallic Components

铝钢双金属元件基于摩擦的固态增材制造中非晶化机理和金属间化合物预防的基本认识

基本信息

项目摘要

Additive manufacturing of dissimilar alloys through depositing specific materials on a given substrate has the potential to achieve effective lightweight structures with required performance and functionality. Aluminum-steel bimetallic components are of strong interest in engineering structural applications because of their availability and affordability. However, direct bonding between aluminum alloys and steels using currently existing manufacturing methods often leads to detrimental intermetallic compounds at the interface, significantly degrading the bonding strength. This award will tackle fundamental research of a novel friction-based solid-state additive manufacturing process, during which localized shear deformation, due to high strain-rates, at dissimilar metallic interfaces may amorphize the processed alloys and suppress intermetallic formation. However, how atomic level diffusion at the bimetallic interface interacts with localized deformations and inhibits the formation of intermetallic compound is a critical knowledge gap hindering full comprehension of such a complex physical phenomenon. Thorough understanding from this research will not only reveal key knowledge necessary to advance dissimilar alloys joining by solid-state additive manufacturing, but also enable a rapid transition for realization and commercialization of high-performance aluminum-steel bimetallic component manufacture. Throughout the project, research materials will be incorporated into several undergraduate and graduate level courses in advanced manufacturing to prepare next-generation engineers for future manufacturing challenges.The specific research objectives of this project include: (1) elucidating the amorphization mechanism and intermetallic formation in high strain-rate solid-state additive manufacturing, which govern the bonding integrity at the joined aluminum-steel interface, (2) investigating the roles of key process parameters in determining aluminum-steel interfacial bond strengths produced by the studied additive manufacturing, and (3) developing and implementing an effective process modeling procedure to achieve intermetallic-free aluminum-steel bimetallic structures. The primary complexity is how to effectively interrelate nanoscale bonding phenomena between dissimilar metals to a macro-scale thermomechanical interactions. To address this challenge, the following multidisciplinary approaches will be pursued: (1) exploring selectively integrated molecular-dynamic and continuum-mechanics based models to reveal the nanoscale deformation and material responses at the interface, (2) performing in-situ process monitoring and interfacial microstructure analysis to guide the multi-physics simulation model and advance the scientific understanding of solid-state metal additive manufacturing, and (3) validating computational procedures using a laboratory setup and evaluating the bond strength of additively produced bimetallic components.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过在给定基底上沉积特定材料来进行异种合金的增材制造,有可能实现具有所需性能和功能的有效轻质结构。铝-钢复合构件由于其可获得性和可承受性而在工程结构应用中具有强烈的兴趣。然而,使用目前现有的制造方法在铝合金和钢之间直接结合常常导致界面处的有害金属间化合物,从而显著降低结合强度。该奖项将解决基于摩擦的新型固态增材制造工艺的基础研究,在此过程中,由于高应变率,在不同金属界面处的局部剪切变形可能使加工合金非晶化并抑制金属间化合物的形成。然而,如何原子水平的扩散在晶界的局部变形相互作用,并抑制金属间化合物的形成是一个关键的知识差距,阻碍充分理解这样一个复杂的物理现象。对这项研究的深入了解不仅将揭示通过固态增材制造推进异种合金连接所需的关键知识,还将使高性能铝-钢复合材料部件制造的实现和商业化实现快速过渡。在整个项目中,研究材料将被纳入先进制造的几个本科生和研究生课程,以培养下一代工程师应对未来制造业的挑战。该项目的具体研究目标包括:(1)阐明高应变率固态增材制造中的非晶化机制和金属间化合物形成,其控制接合的铝-钢界面处的结合完整性,(2)研究关键工艺参数在确定由所研究的增材制造产生的铝-钢界面结合强度中的作用,以及(3)开发并实施有效的工艺建模程序以实现无金属间化合物的铝-钢复合结构。主要的复杂性是如何有效地将不同金属之间的纳米级键合现象与宏观尺度的热机械相互作用联系起来。为应对这一挑战,将采取以下多学科办法:(1)探索选择性集成的基于分子动力学和连续力学的模型,以揭示界面处的纳米级变形和材料响应,(2)进行原位过程监测和界面微观结构分析,以指导多物理场仿真模型并推进对固态金属增材制造的科学理解,以及(3)使用实验室设置验证计算程序,并评估增材制造的粘结剂组件的粘结强度。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amorphous interfacial microstructure and high bonding strength in Al-Fe bimetallic components enabled by a large-area solid-state additive manufacturing technique
大面积固态增材制造技术实现 Al-Fe 双金属部件的非晶界面微观结构和高结合强度
  • DOI:
    10.1016/j.jmatprotec.2022.117721
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Liu, F.C.;Dong, P.;Khan, A.S.;Sun, K.;Lu, W.;Taub, A.;Allison, J.E.
  • 通讯作者:
    Allison, J.E.
A Coarse-Mesh hybrid structural stress method for fatigue evaluation of Spot-Welded structures
用于点焊结构疲劳评估的粗网格混合结构应力法
  • DOI:
    10.1016/j.ijfatigue.2022.107109
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Zhang, Lunyu;Dong, Pingsha;Wang, Yuedong;Mei, Jifa
  • 通讯作者:
    Mei, Jifa
Joining of metal and non-polar polypropylene composite through a simple functional group seeding layer
  • DOI:
    10.1016/j.jmapro.2022.11.022
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    A. Khan;F. Liu;P. Dong
  • 通讯作者:
    A. Khan;F. Liu;P. Dong
Fracture Mechanics Modeling of Fatigue Behaviors of Adhesive-Bonded Aluminum Alloy Components
粘结铝合金部件疲劳行为的断裂力学建模
  • DOI:
    10.3390/met12081298
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zhang, Yuning;Dong, Pingsha;Pei, Xianjun
  • 通讯作者:
    Pei, Xianjun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pingsha Dong其他文献

An overview and comparative assessment of approaches to multi-axial fatigue of welded components in codes and standards
  • DOI:
    10.1016/j.ijfatigue.2021.106144
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jifa Mei;Pingsha Dong;Shizhu Xing;Anoop Vasu;Alain Ganamet;Jerry Chung;Yogesh Mehta
  • 通讯作者:
    Yogesh Mehta
A study on internal quenching of hollow extrusions to reduce distortion and increase the energy to failure of aluminum profiles
  • DOI:
    10.1007/s12289-025-01881-z
  • 发表时间:
    2025-02-24
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Ala’aldin Alafaghani;Riccardo Puleo;Lillian Adams;Pingsha Dong;Daniel Cooper
  • 通讯作者:
    Daniel Cooper
An improved closed-form residual stress estimation method for girth welds in thin-walled pipe components
一种改进的薄壁管件环焊缝残余应力闭合形式估算方法
  • DOI:
    10.1016/j.tws.2025.113343
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Zetao Jin;Pingsha Dong;Shaopin Song
  • 通讯作者:
    Shaopin Song
A moment of load path-based parameter for modeling multiaxial fatigue damage of welded structures
  • DOI:
    10.1016/j.ijfatigue.2023.107575
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zhigang Wei;Pingsha Dong;Jifa Mei;Xianjun Pei;Sandipp Krishnan Ravi
  • 通讯作者:
    Sandipp Krishnan Ravi
A 2nd−order SCF solution for modeling distortion effects on fatigue of lightweight structures
  • DOI:
    10.1007/s40194-019-00772-7
  • 发表时间:
    2019-07-26
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Wenqing Zhou;Pingsha Dong;Ingrit Lillemae;Heikki Remes
  • 通讯作者:
    Heikki Remes

Pingsha Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 47.82万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 47.82万
  • 项目类别:
    Studentship
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 47.82万
  • 项目类别:
    Studentship
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
  • 批准号:
    MR/Y034244/1
  • 财政年份:
    2025
  • 资助金额:
    $ 47.82万
  • 项目类别:
    Fellowship
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 47.82万
  • 项目类别:
    Research Grant
Home helper robots: Understanding our future lives with human-like AI
家庭帮手机器人:用类人人工智能了解我们的未来生活
  • 批准号:
    FT230100021
  • 财政年份:
    2025
  • 资助金额:
    $ 47.82万
  • 项目类别:
    ARC Future Fellowships
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
  • 批准号:
    LE240100091
  • 财政年份:
    2024
  • 资助金额:
    $ 47.82万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Understanding the implications of pandemic delays for the end of life
了解大流行延迟对生命终结的影响
  • 批准号:
    DP240101775
  • 财政年份:
    2024
  • 资助金额:
    $ 47.82万
  • 项目类别:
    Discovery Projects
Understanding multiday cycles underpinning human physiology
了解支撑人体生理学的多日周期
  • 批准号:
    DP240102899
  • 财政年份:
    2024
  • 资助金额:
    $ 47.82万
  • 项目类别:
    Discovery Projects
Understanding T cell trafficking and function during antigenic interference
了解抗原干扰期间 T 细胞的运输和功能
  • 批准号:
    DP240101665
  • 财政年份:
    2024
  • 资助金额:
    $ 47.82万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了