Hyperdimensional Neural Computation for Real-Time Cognitive Learning

用于实时认知学习的超维神经计算

基本信息

  • 批准号:
    2127780
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

With each passing year, the volume of analyzable data continues to explode, with new information gathered from a variety of video, sensors, and informatics platforms. Therefore, we face increasing needs for machine learning techniques to adaptively analyze this large-scale data and transform that into actionable knowledge. Today's machine learning algorithms, however, have the following key technical challenges: (1) they are extremely slow and inefficient on lightweight embedded devices, e.g., smartphones or smartwatches, (2) they are very vulnerable to noise and failures that often exist in highly scaled technology and network, and (3) they lack brain-like cognitive support and adaptation to provide a high quality of learning and a reason for each prediction and decision. To achieve real-time performance with high energy efficiency and robustness, we redesign algorithms using strategies that more closely model the human brain. We leverage Hyper-Dimensional Computing (HDC), a brain-inspired method, motivated by the observation that the human brain operates on high-dimensional space. In HDC, objects are encoded into high-dimensional vectors to represent neural patterns with thousands of elements. This encoding transforms data into knowledge that enables lightweight cognitive learning. In this project, we develop an infrastructure that supports a wide range of learning and cognitive tasks with high robustness and efficiency. Our open-source infrastructure provides real-time and dynamic learning, with a wide range of applications in intelligent healthcare, environmental monitoring, and smart distributed systems. The project will also support underrepresented minority students through synergistic outreach plans and educational activities, including programs for K-12 students, undergraduate research opportunities, and new course development.The novel research approaches introduced in this project aim to lay the foundations for deeper integration of brain-inspired mathematics, learning algorithm, and hardware. This includes the development of: (1) encoding methods that map various spatial-temporal data into high-dimensional space, including simple numerical values to complex video/images, (2) algorithmic solutions that enable brain-like learning and cognitive tasks over encoded data, and (3) hardware-software libraries that significantly accelerate the HDC algorithms. Our programmable processor natively supports HDC operations while utilizing extensive parallelism offered by multiple hardware platforms. We will evaluate the effectiveness of our framework on multiple large-scale systems, including smart home and environmental monitoring. Our prototypes will be fully released under an established open-source library for wide public dissemination.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着时间的推移,可分析数据的数量持续爆炸式增长,从各种视频、传感器和信息平台收集到新的信息。因此,我们越来越需要机器学习技术来自适应地分析这些大规模数据并将其转化为可操作的知识。然而,今天的机器学习算法面临以下关键技术挑战:(1)它们在轻量级嵌入式设备上非常缓慢和低效,例如智能手机或智能手表;(2)它们非常容易受到高度规模化技术和网络中经常存在的噪音和故障的影响;(3)它们缺乏类似大脑的认知支持和适应,无法提供高质量的学习和每个预测和决策的原因。为了实现具有高能效和鲁棒性的实时性能,我们重新设计了使用更接近人类大脑模型的策略的算法。我们利用了超维计算(HDC),这是一种以大脑为灵感的方法,其动机是观察到人类大脑在高维空间上运行。在HDC中,对象被编码为高维向量,以表示具有数千个元素的神经模式。这种编码将数据转换为知识,从而实现轻量级的认知学习。在这个项目中,我们开发了一个基础设施,它支持广泛的学习和认知任务,具有高鲁棒性和效率。我们的开源基础设施提供实时和动态学习,在智能医疗保健、环境监测和智能分布式系统中具有广泛的应用。该项目还将通过协同推广计划和教育活动,包括K-12学生项目、本科生研究机会和新课程开发,支持代表性不足的少数民族学生。本项目引入的新颖研究方法旨在为大脑启发数学、学习算法和硬件的更深层次整合奠定基础。这包括:(1)将各种时空数据映射到高维空间的编码方法,包括简单的数值到复杂的视频/图像,(2)在编码数据上实现类脑学习和认知任务的算法解决方案,以及(3)显著加速HDC算法的硬件-软件库。我们的可编程处理器原生支持HDC操作,同时利用多个硬件平台提供的广泛并行性。我们将评估我们的框架在多个大型系统上的有效性,包括智能家居和环境监测。我们的原型将在一个已建立的开源库下全面发布,以供广泛的公众传播。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Brain-Inspired Hyperdimensional Computing for Ultra-Efficient Edge AI
用于超高效边缘人工智能的类脑超维计算
Bayesian Optimization for Expensive Smooth-Varying Functions
  • DOI:
    10.1109/mis.2022.3163227
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Mahdi Imani;M. Imani;Seyede Fatemeh Ghoreishi
  • 通讯作者:
    Mahdi Imani;M. Imani;Seyede Fatemeh Ghoreishi
Adaptive neural recovery for highly robust brain-like representation
  • DOI:
    10.1145/3489517.3530659
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Prathyush P. Poduval;Yang Ni;Yeseong Kim;K. Ni;Raghavan Kumar;Rosario Cammarota;M. Imani
  • 通讯作者:
    Prathyush P. Poduval;Yang Ni;Yeseong Kim;K. Ni;Raghavan Kumar;Rosario Cammarota;M. Imani
HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning System
HyDREA:利用超维计算打造更强大、更高效的机器学习系统
  • DOI:
    10.1145/3524067
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Morris, Justin;Ergun, Kazim;Khaleghi, Behnam;Imani, Mohsen;Aksanli, Baris;Rosing, Tajana
  • 通讯作者:
    Rosing, Tajana
Stochastic Computing for Reliable Memristive In-Memory Computation
  • DOI:
    10.1145/3583781.3590307
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohsen Riahi Alam;M. Najafi;N. Taherinejad;M. Imani;Lu Peng
  • 通讯作者:
    Mohsen Riahi Alam;M. Najafi;N. Taherinejad;M. Imani;Lu Peng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohsen Imani其他文献

Design of Ultra-Compact Content Addressable Memory Exploiting 1T-1MTJ Cell
利用 1T-1MTJ 单元的超紧凑内容可寻址存储器设计
Sparsity Controllable Hyperdimensional Computing for Genome Sequence Matching Acceleration
用于基因组序列匹配加速的稀疏可控超维计算
Lightning Talk: Bridging Neuro-Dynamics and Cognition
闪电演讲:连接神经动力学和认知
Self-Attention Based Semantic Decomposition in Vector Symbolic Architectures
向量符号架构中基于自注意力的语义分解
  • DOI:
    10.48550/arxiv.2403.13218
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Calvin Yeung;Prathyush P. Poduval;Mohsen Imani
  • 通讯作者:
    Mohsen Imani
Efficient Exploration in Edge-Friendly Hyperdimensional Reinforcement Learning
边缘友好的超维强化学习的高效探索

Mohsen Imani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohsen Imani', 18)}}的其他基金

CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
  • 批准号:
    2312517
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Neurally-Inspired Integration of Communication and Cognitive Computation in Hyperspace
超空间中通信和认知计算的神经启发集成
  • 批准号:
    2319198
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SBIR Phase I: A Mixed-Computation Neural Network Acceleration Stack for Edge Inference
SBIR 第一阶段:用于边缘推理的混合计算神经网络加速堆栈
  • 批准号:
    2304304
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Investigating Symbolic Computation in the Brain: Neural Mechanisms of Compositionality
研究大脑中的符号计算:组合性的神经机制
  • 批准号:
    10644518
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Exploring the multiple loci of learning and computation in simple artificial neural networks
探索简单人工神经网络中学习和计算的多个位点
  • 批准号:
    EP/X017915/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Interrogating the Dynamic Neural Computation of the Sense of Direction
质疑方向感的动态神经计算
  • 批准号:
    10752171
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
FET: Medium: Neural network computation and learning in well-mixed and spatially-organized molecular systems
FET:中:混合良好且空间组织的分子系统中的神经网络计算和学习
  • 批准号:
    2212546
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Neural circuits that mediate computation of salience
介导显着性计算的神经回路
  • 批准号:
    10417625
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Working towards an effective field theory of neural computation
致力于神经计算的有效场论
  • 批准号:
    545841-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Dendritic Computation and the Neural Code
树突计算和神经代码
  • 批准号:
    RGPIN-2017-06872
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Neural circuits that mediate computation of salience
介导显着性计算的神经回路
  • 批准号:
    10599214
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Investigating biomarkers for neural fingerprinting of MEG resting state recordings using computation
使用计算研究 MEG 静息态记录的神经指纹识别生物标志物
  • 批准号:
    573527-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了