Collaborative Research: CPS: Medium: RUI: Cooperative AI Inference in Vehicular Edge Networks for Advanced Driver-Assistance Systems

协作研究:CPS:中:RUI:高级驾驶员辅助系统车辆边缘网络中的协作人工智能推理

基本信息

  • 批准号:
    2128341
  • 负责人:
  • 金额:
    $ 32.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Artificial Intelligence (AI) has shown superior performance in enhancing driving safety in advanced driver-assistance systems (ADAS). State-of-the-art deep neural networks (DNNs) achieve high accuracy at the expense of increased model complexity, which raises the computation burden of onboard processing units of vehicles for ADAS inference tasks. The primary goal of this project is to develop innovative collaborative AI inference strategies with the emerging edge computing paradigm. The strategies can adaptively adjust cooperative inference techniques for best utilizing available computation and communication resources and ultimately enable high-accuracy and real-time inference. The project will inspire greater collaborations between experts in wireless communication, edge computing, computer vision, autonomous driving testbed development, and automotive manufacturing, and facilitate AI applications in a variety of IoT systems. The educational testbed developed from this project can be integrated into courses to provide hands-on experiences. This project will benefit undergraduate, master, and Ph.D. programs and increase under-represented groups’ engagement by leveraging the existing diversity-related outreach efforts.A multi-disciplinary team with complementary expertise from Rowan University, Temple University, Stony Brook University, and Kettering University is assembled to pursue a coordinated study of collaborative AI inference. The PIs explore integrative research to enable deep learning technologies in resource-constrained ADAS for high-accuracy and real-time inference. Theory-wise, the PIs plan to take advantage of the observation that DNNs can be decomposed into a set of fine-grained components to allow distributed AI inference on both the vehicle and edge server sides for inference acceleration. Application-wise, the PIs plan to design novel DNN models which are optimized for the cooperative AI inference paradigm. Testbed-wise, a vehicle edge computing platform with V2X communication and edge computing capability will be developed at Kettering University GM Mobility Research Center. The cooperative AI inference system will be implemented, and the research findings will be validated on realistic vehicular edge computing environments thoroughly. The data, software, and educational testbeds developed from this project will be widely disseminated. Domain experts in autonomous driving testbed development, intelligent transportation systems, and automotive manufacturing will be engaged in project-related issues to ensure relevant challenges in this project are impactful for real-world applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)在增强高级驾驶辅助系统(ADAS)的驾驶安全性方面表现出了上级性能。最先进的深度神经网络(DNN)以增加模型复杂性为代价实现了高精度,这增加了ADAS推理任务的车载处理单元的计算负担。该项目的主要目标是利用新兴的边缘计算范式开发创新的协作AI推理策略。该策略可以自适应地调整协作推理技术,以最好地利用可用的计算和通信资源,并最终实现高精度和实时的推理。该项目将激发无线通信、边缘计算、计算机视觉、自动驾驶测试台开发和汽车制造领域专家之间的更大合作,并促进人工智能在各种物联网系统中的应用。从这个项目开发的教育测试平台可以集成到课程中,以提供实践经验。本项目将惠及本科生、硕士生和博士生。计划,并通过利用现有的多样性相关的外展工作增加代表性不足的群体的参与。一个多学科的团队与来自罗文大学,天普大学,斯托尼布鲁克大学和凯特林大学的互补专业知识组装,以追求协作人工智能推理的协调研究。PI探索综合研究,以使深度学习技术在资源受限的ADAS中实现高精度和实时推理。从理论上讲,PI计划利用DNN可以分解为一组细粒度组件的观察结果,以允许在车辆和边缘服务器端进行分布式AI推理,从而加速推理。在应用方面,PI计划设计新的DNN模型,这些模型针对协作AI推理范式进行了优化。在测试平台方面,将在凯特林大学通用汽车移动研究中心开发具有V2X通信和边缘计算能力的车辆边缘计算平台。将实现协同人工智能推理系统,并在真实的车辆边缘计算环境中对研究结果进行全面验证。该项目开发的数据、软件和教育试验平台将得到广泛传播。自动驾驶试验台开发、智能交通系统和汽车制造领域的专家将参与项目相关问题的研究,以确保该项目中的相关挑战对现实世界的应用具有影响力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shen Shyang Ho其他文献

Shen Shyang Ho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shen Shyang Ho', 18)}}的其他基金

New Approaches for Dynamic Graph Anomaly Detection, Prediction, and Explanation
动态图异常检测、预测和解释的新方法
  • 批准号:
    2213658
  • 财政年份:
    2022
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
ATD: New Approaches for Analyzing Spatiotemporal Data for Anomalies
ATD:分析时空数据异常的新方法
  • 批准号:
    1830489
  • 财政年份:
    2018
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
  • 批准号:
    2423130
  • 财政年份:
    2024
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
  • 批准号:
    2305882
  • 财政年份:
    2023
  • 资助金额:
    $ 32.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了