FW-HTF-R: Fostering Learning and Adaptability of Future Manufacturing Workers with Intelligent Extended Reality (IXR)

FW-HTF-R:通过智能扩展现实 (IXR) 促进未来制造业工人的学习和适应能力

基本信息

  • 批准号:
    2128743
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-15 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

This research project imagines the future of work in precision manufacturing where the spatial and causal reasoning and decision-making abilities of workers are augmented through teaming with intelligent extended reality (IXR) technologies. Evidence suggests that the newer wave of automation in manufacturing is not so much to replace workers but rather to complement human work to increase precision, safety, and product quality. Yet, U.S. manufacturers are not adequately addressing the changing nature of skill requirements which is anticipated to leave 2.4 million manufacturing jobs unfilled by 2030. This project will address the urgent need for breakthrough technologies that enable workplace-based learning and rapid upskilling of the manufacturing workforce on complex, cognitively demanding, and hard-to-automate tasks. The project will focus on precision machining and inspection in the aviation industry as the specific work context for building and validating the IXR technologies, which is also expected to inform the technology development in other industries such as medical, automotive, semiconductor, and defense. The convergent research team will create new technological pathways to enable intelligent worker-XR teaming and advance the fundamental understanding of its impacts on labor economy and worker learning and innovation. This project aims to create new perspectives, methods, and discoveries to unleash the full potential of America’s manufacturing workforce, and as such, strengthen national prosperity and economic competitiveness in precision manufacturing.This project brings together several disciplines, including engineering, learning sciences, social sciences, economics, computer sciences, psychology, and workforce development. The investigator team is structured to achieve multiple convergent goals across the three dimensions of the Future of Work at the Human-Technology Frontier: (1) The Future Work dimension will investigate the changes in employer skill requirements for precision manufacturing including education, years of experience, and actual skills, using a proprietary database of 160 million online job vacancies. Expert interviews, firm-level surveys, and in-depth case studies will investigate training and upskilling practices for incumbent and entry-level workers, explore accessibility of the IXR approach for certain groups of workers and firms, and identify economic barriers and opportunities for adopting the IXR technology. (2) The Future Technology dimension will advance the fundamental understanding of how new sources of multimodal data captured by XR devices, digital thread, IoT, and cloud-based analytics can be harnessed to interpret, predict, and guide the behavior of precision manufacturing workers. A novel IXR technology will be built and validated that adapts the scientific methods of computer vision, natural language understanding, and inference engines to provide intuitive and personalized assistance to workers performing complex reasoning and problem-solving tasks. (3) The Future Worker dimension will generate new knowledge about the affordances of worker-XR teaming to support the development of workers’ adaptive expertise for increasingly complex manufacturing tasks, building on research from the learning sciences that examines cognitive processes associated with complex reasoning and problem solving. It is expected that the knowledge generated in this project will elicit new pathways for the design of future collaborative human-technology systems for training adult workers beyond XR. This project has been funded by the Future of Work at the Human-Technology Frontier cross-directorate program to promote a deeper basic understanding of the interdependent human-technology partnership in work contexts by advancing the design of intelligent work technologies that operate in harmony with human workers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目设想了精密制造工作的未来,通过与智能延展实境(IXR)技术合作,增强了工人的空间和因果推理和决策能力。有证据表明,制造业的新一轮自动化浪潮与其说是为了取代工人,不如说是为了补充人类工作,以提高精度、安全性和产品质量。然而,美国制造商并没有充分应对技能要求不断变化的性质,预计到2030年将有240万个制造业工作岗位空缺。该项目将解决对突破性技术的迫切需求,这些技术能够实现基于工作场所的学习,并快速提高制造业劳动力在复杂,认知要求高和难以自动化的任务上的技能。该项目将专注于航空工业的精密加工和检测,作为构建和验证IXR技术的具体工作背景,预计还将为医疗、汽车、半导体和国防等其他行业的技术开发提供信息。聚合研究团队将创造新的技术途径,以实现智能工人-XR团队合作,并推进其对劳动经济和工人学习与创新影响的基本理解。该项目旨在创造新的视角、方法和发现,以释放美国制造业劳动力的全部潜力,从而加强国家繁荣和精密制造业的经济竞争力。该项目汇集了多个学科,包括工程学、学习科学、社会科学、经济学、计算机科学、心理学和劳动力发展。该调查团队的结构是为了在人类-技术前沿的未来工作的三个维度上实现多个趋同目标:(1)未来工作维度将使用1.6亿个在线职位空缺的专有数据库,调查精密制造业雇主技能要求的变化,包括教育,多年经验和实际技能。专家访谈、公司层面的调查和深入的案例研究将调查在职和入门级工人的培训和提高技能的做法,探索IXR方法对某些工人和公司群体的可及性,并确定采用IXR技术的经济障碍和机会。(2)未来技术维度将推进对XR设备、数字线程、物联网和基于云的分析捕获的多模式数据的新来源如何被利用来解释、预测和指导精密制造工人的行为的基本理解。一种新的IXR技术将被构建和验证,该技术将适应计算机视觉、自然语言理解和推理引擎的科学方法,为执行复杂推理和解决问题任务的工作人员提供直观和个性化的帮助。(3)未来工人维度将产生关于工人-XR团队合作的新知识,以支持工人适应日益复杂的制造任务的专业知识的发展,建立在学习科学的研究基础上,该科学研究了与复杂推理和解决问题相关的认知过程。预计该项目中产生的知识将为设计未来的协作人类技术系统提供新的途径,以培训XR以外的成年工人。该项目由人类技术前沿跨部门计划的未来工作资助,以促进对相互依赖的人类的更深入的基本理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohsen Moghaddam其他文献

Leveraging Task Modularity in Reinforcement Learning for Adaptable Industry 4.0 Automation
利用强化学习中的任务模块化实现适应性工业 4.0 自动化
  • DOI:
    10.1115/1.4049531
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Qiliang Chen;B. Heydari;Mohsen Moghaddam
  • 通讯作者:
    Mohsen Moghaddam
Best matching processes in distributed systems
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohsen Moghaddam
  • 通讯作者:
    Mohsen Moghaddam
Real-time administration of tool sharing and best matching to enhance assembly lines balanceability and flexibility
  • DOI:
    10.1016/j.mechatronics.2014.10.001
  • 发表时间:
    2015-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohsen Moghaddam;Shimon Y. Nof
  • 通讯作者:
    Shimon Y. Nof
Augmenting Learning with Augmented Reality: Exploring the Affordances of AR in Supporting Mastery of Complex Psychomotor Tasks
通过增强现实增强学习:探索 AR 在支持掌握复杂精神运动任务方面的功能可供性
  • DOI:
    10.48550/arxiv.2305.09875
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dong Woo Yoo;Sakib Reza;Nicholas Wilson;K. Jona;Mohsen Moghaddam
  • 通讯作者:
    Mohsen Moghaddam
Modeling Gaze Behavior for Real-Time Estimation of Visual Attention and Expertise Level in Augmented Reality
对注视行为进行建模,以实时估计增强现实中的视觉注意力和专业水平

Mohsen Moghaddam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mohsen Moghaddam', 18)}}的其他基金

Accelerating Skill Acquisition in Complex Psychomotor Tasks via an Intelligent Extended Reality Tutoring System
通过智能扩展现实辅导系统加速复杂精神运动任务中的技能习得
  • 批准号:
    2302838
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: From User Reviews to User-Centered Generative Design: Automated Methods for Augmented Designer Performance
协作研究:从用户评论到以用户为中心的生成设计:增强设计师性能的自动化方法
  • 批准号:
    2050052
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
FW-HTF-P: Training an Agile, Adaptive Workforce for the Future of Manufacturing with Intelligent Augmented Reality
FW-HTF-P:通过智能增强现实为未来的制造培训一支敏捷、适应性强的员工队伍
  • 批准号:
    2026618
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似国自然基金

转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

FW-HTF-RL: Success via a Human-Assistive Wearable Technology Partnership Fostering Neurodiverse Individuals' Work Success via an Assistive Wearable Technology
FW-HTF-RL:通过人类辅助可穿戴技术合作伙伴关系取得成功通过辅助可穿戴技术促进神经多样性个体的工作成功
  • 批准号:
    2326270
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326408
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Conference: 2023 NSF FW-HTF PI Meeting; Boston, Massachusetts; 31 August to 1 September 2023
会议:2023 NSF FW-HTF PI 会议;
  • 批准号:
    2329684
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
FW-HTF-R: The Future of Equitable Childcare Worker Technologies
FW-HTF-R:公平儿童保育员技术的未来
  • 批准号:
    2222242
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
  • 批准号:
    2326146
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了