RESEARCH-PGR/NSF-BSF: Identification and Functional Dissection of Shared Cis-Regulatory Elements Controlling Quantitative Trait Variation Across Angiosperms
RESEARCH-PGR/NSF-BSF:控制被子植物数量性状变异的共享顺式调控元件的识别和功能剖析
基本信息
- 批准号:2129189
- 负责人:
- 金额:$ 400万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Crop plants provide food, feed for livestock, and other essential materials. Breeders are continuously improving our crops; however, there is an urgent need to accelerate crop improvement in the face of climate change and limited resources. Natural genetic variation in the form of DNA mutations is widespread in crops, and is the starting material for their improvement, but such variation is often not useful or is unpredictable in its effect on plant growth. Genes that control important yield traits are expressed at specific levels, locations and times during plant growth, and tuning these expression programs may enhance crop productivity. Gene expression is controlled by regions of DNA surrounding genes known as cis-regulatory elements. Despite their fundamental biological significance, the identification of such elements and their use in agriculture has been challenging. This research project, a collaborative effort between scientists at Cold Spring Harbor Laboratory, the University of Massachusetts-Amherst, and the Hebrew University of Jerusalem, will predict regulatory elements using a newly developed computational algorithm, Conservatory, combined with existing genome sequences from many plant families. These elements will then be modified using CRISPR genome editing tools. These new variants will be tested for changes in phenotype that lead to improvements in yield and other important agronomic traits. The project will train young scientists at various levels, as well as promote outreach and education in plant genomics in partnership with Genspace, a Community Biology lab in Brooklyn, NY. The project will develop a new curriculum for high school students from under-resourced Title I schools and demographic groups historically excluded from the life sciences to explore applications of CRISPR in agriculture, including hands-on labs in plant transformation and CRISPR editing. This project will test the hypothesis that genes with conserved functions are regulated by deeply conserved cis-regulatory elements (CREs) across angiosperms, and that characterizing these CREs will provide a new level of understanding in linking genotype to phenotype. The project will exploit the recent explosion in high-quality sequenced genomes to identify conserved regulatory elements across angiosperm diversity using the Conservatory algorithm. The functions of the elements identified by Conservatory will be tested by precise genome editing, with a focus on developmental regulators and architectural traits. Functional dissections will be performed in two species in each of three diverse plant families, spanning eudicots and monocots, which will allow the assessment of CRE functional evolution over shallow and deep timescales. The catalog of conserved regulatory elements identified, and the editing strategies developed to test their functions, will reveal fundamental principles governing gene expression control and will accelerate innovative approaches to fine-tune crop productivity traits. Critically, the tools, techniques and fundamental principles emerging from this multi-disciplinary project will comprise a valuable community resource, enabling the engineering of diverse systems and phenotypes, such as biotic and abiotic stress tolerance, nutritional quality, and symbiosis. All project outcomes will be widely accessible through long-term public data and genetic repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
农作物为牲畜提供食物、饲料和其他基本材料。育种者正在不断改进我们的作物;然而,面对气候变化和有限的资源,迫切需要加快作物改良。DNA突变形式的自然遗传变异在作物中广泛存在,是作物改良的起始材料,但这种变异通常没有用,或者对植物生长的影响是不可预测的。控制重要产量性状的基因在植物生长期间以特定水平、位置和时间表达,并且调整这些表达程序可以提高作物生产力。基因表达是由基因周围的DNA区域控制的,这些区域被称为顺式调控元件。尽管它们具有基本的生物学意义,但这些元素的鉴定及其在农业中的应用一直具有挑战性。这项研究项目是冷泉港实验室、马萨诸塞大学阿默斯特分校和耶路撒冷希伯来大学的科学家们的合作,将使用新开发的计算算法Conservatory结合许多植物家族的现有基因组序列来预测调控元件。然后使用CRISPR基因组编辑工具修改这些元件。这些新的变异体将被测试表型的变化,从而导致产量和其他重要农艺性状的改善。该项目将培训各级年轻科学家,并与纽约布鲁克林的社区生物学实验室Genspace合作,促进植物基因组学的推广和教育。该项目将为来自资源不足的Title I学校和历史上被排除在生命科学之外的人口群体的高中生开发新课程,以探索CRISPR在农业中的应用,包括植物转化和CRISPR编辑的动手实验室。 该项目将测试这一假设,即具有保守功能的基因是由被子植物中高度保守的顺式调控元件(克雷斯)调控的,并且表征这些克雷斯将为基因型与表型之间的联系提供新的理解水平。该项目将利用最近高质量测序基因组的爆炸,使用温室算法确定被子植物多样性的保守调控元件。温室所确定的元素的功能将通过精确的基因组编辑进行测试,重点是发育调节因子和结构特征。功能解剖将在三个不同的植物家族中的每一个中的两个物种中进行,跨越真双子叶植物和单子叶植物,这将允许在浅和深的时间尺度上评估CRE功能进化。确定的保守调控元件目录以及为测试其功能而开发的编辑策略将揭示基因表达控制的基本原则,并将加速微调作物生产力性状的创新方法。重要的是,从这个多学科项目中产生的工具,技术和基本原则将构成一个宝贵的社区资源,使不同系统和表型的工程,如生物和非生物胁迫耐受性,营养质量和共生。所有项目成果将通过长期公共数据和基因库广泛获取。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convergent selection of a WD40 protein that enhances grain yield in maize and rice
- DOI:10.1126/science.abg7985
- 发表时间:2022-03-25
- 期刊:
- 影响因子:56.9
- 作者:Chen, Wenkang;Chen, Lu;Yang, Xiaohong
- 通讯作者:Yang, Xiaohong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Jackson其他文献
Developing Student Generated Computer Portfolios
开发学生生成的计算机作品集
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
David Jackson - 通讯作者:
David Jackson
Recommendations for normalization of microarray data
微阵列数据标准化的建议
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
T. Beissbarth;M. Ruschhaupt;David Jackson;C. Lawerenz;U. Mansmann - 通讯作者:
U. Mansmann
Efficacy and Safety of Benralizumab Compared with Mepolizumab in the Treatment of Eosinophilic Granulomatosis with Polyangiitis in Patients Receiving Standard of Care Therapy: Phase 3 MANDARA Study
- DOI:
10.1016/j.jaci.2023.11.868 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:
- 作者:
Michael Wechsler;Parameswaran Nair;Benjamin Terrier;Bastian Walz;Arnaud Bourdin;David Jayne;David Jackson;Florence Roufosse;Lena Börjesson Sjö;Ying Fan;Maria Jison;Christopher McCrae;Sofia Necander;Anat Shavit;Claire Walton;Peter Merkel - 通讯作者:
Peter Merkel
MO2-11-3 - BRCA variant classification is improved by Japanese SNP data and correlate with response to PARP inhibition in MH GUIDE
- DOI:
10.1093/annonc/mdz338.071 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Yosuke Hirotsu;Udo Schmidt-Edelkraut;Xiaoyue Wang;Regina Bohnert;Markus Hartenfeller;Peter Koch;Andreas Werner;Ram Narang;Sajo Kaduthanam;Francesca Diella;Martin Stein;Josef Hermanns;Stephan Brock;Stephan Hettich;David Jackson - 通讯作者:
David Jackson
P374: A novel variant causing <em>BCAP31</em>-related syndrome in a male incidentally found to have glutaric aciduria III
- DOI:
10.1016/j.gimo.2024.101268 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:
- 作者:
Erin Huggins;David Jackson;Priya Kishnani - 通讯作者:
Priya Kishnani
David Jackson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Jackson', 18)}}的其他基金
Mechanisms of Transport Through Plasmodesmata
通过胞间连丝的运输机制
- 批准号:
2224874 - 财政年份:2023
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Mechanism of Trehalose Control of Shoot Development
海藻糖控制芽发育的机制
- 批准号:
2131631 - 财政年份:2022
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Mechanisms of Transport Through Plasmodesmata
通过胞间连丝的运输机制
- 批准号:
1930101 - 财政年份:2019
- 资助金额:
$ 400万 - 项目类别:
Continuing Grant
Mechanism of trehalose control of shoot development
海藻糖控制芽发育的机制
- 批准号:
1755141 - 财政年份:2018
- 资助金额:
$ 400万 - 项目类别:
Continuing Grant
NSF EAGER: A cross-kingdom comparison of single cell transcriptomes
NSF EAGER:单细胞转录组的跨界比较
- 批准号:
1833182 - 财政年份:2018
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Leucocyte and Pathogen Trafficking through Lymphatics in Inflammation and Immunity
炎症和免疫中白细胞和病原体通过淋巴管的运输
- 批准号:
MC_UU_00008/2 - 财政年份:2017
- 资助金额:
$ 400万 - 项目类别:
Intramural
RESEARCH-PGR: Dissecting the Genomic Architecture of Functional Redundancy to Modulate Meristem Homeostasis and Crop Yields
RESEARCH-PGR:剖析功能冗余的基因组结构以调节分生组织稳态和作物产量
- 批准号:
1546837 - 财政年份:2016
- 资助金额:
$ 400万 - 项目类别:
Continuing Grant
Mechanisms of Transport Through Plasmodesmata
通过胞间连丝的运输机制
- 批准号:
1457187 - 财政年份:2015
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Conference - Mechanisms in Plant Development, in Saxtons River, Vermont, USA.
会议 - 植物发育机制,在美国佛蒙特州萨克斯顿河举行。
- 批准号:
1340580 - 财政年份:2013
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Effects of Focal Mechanisms, Fault Slip, and Strain Rate on Earthquake Clustering
震源机制、断层滑移和应变率对地震群聚的影响
- 批准号:
1045876 - 财政年份:2011
- 资助金额:
$ 400万 - 项目类别:
Continuing Grant
相似国自然基金
E3连接酶RNF213导致PGR缺陷在子宫内膜蜕膜化中的作用机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:地区科学基金项目
孕激素通过 PGR/RUNX 调控胎盘 ASPROSIN 转录介
导妊娠期糖尿病
- 批准号:2024JJ5350
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
通过构建Pgr-Cas9工具小鼠研究Hippo通路效应因子Yap1/Wwtr1在蜕膜化过程中的作用
- 批准号:32370913
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
海洋硅藻PGR5/PGRL1蛋白感知和适应波动光的作用机制研究
- 批准号:42276146
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
KLF12通过调控PGR和GDF10的表达抑制孕激素诱导子宫内膜癌细胞分化的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
HBP1调节PGR转录活性在胚胎植入及妊娠维持中的作用机制
- 批准号:82160296
- 批准年份:2021
- 资助金额:34.00 万元
- 项目类别:地区科学基金项目
靶向PGR阳性乳腺癌的多功能钌配合物合成及其抗肿瘤机制研究
- 批准号:21501074
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
- 批准号:
2331437 - 财政年份:2024
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
- 批准号:
2334028 - 财政年份:2024
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
TRTech-PGR: PlantTransform: Boosting Agrobacterium-mediated transformation efficiency in the orphan crop tef (Eragrostis tef) for trait improvement
TRTech-PGR:PlantTransform:提高孤儿作物 tef(画眉草 tef)中农杆菌介导的转化效率,以改善性状
- 批准号:
2327906 - 财政年份:2024
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
RESEARCH-PGR: Cycling to low-temperature tolerance
研究-PGR:循环到耐低温
- 批准号:
2332611 - 财政年份:2024
- 资助金额:
$ 400万 - 项目类别:
Continuing Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
- 批准号:
2331438 - 财政年份:2024
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
- 批准号:
2334027 - 财政年份:2024
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
RESEARCH-PGR: Unlocking the Genetic and Epigenetic Basis of Cereal Crop Adaptation to Acidic Soil Regions
研究-PGR:揭示谷物作物适应酸性土壤地区的遗传和表观遗传基础
- 批准号:
2328611 - 财政年份:2024
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Collaborative Research: RUI: RESEARCH-PGR Meeting Future Food Demands: Phosphoproteomics to Unravel Signaling Pathways in Soybean's Response to Phosphate and Iron Deficiency
合作研究:RUI:RESEARCH-PGR 满足未来食品需求:磷酸蛋白质组学揭示大豆对磷酸盐和铁缺乏的反应的信号通路
- 批准号:
2329893 - 财政年份:2024
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
TRTech-PGR: Unlocking Bread Wheat Genome Diversity: Foundational Genome Sequences and Resources to Advance Breeding and Biotechnological Improvement of a Global Food Security Crop
TRTech-PGR:解锁面包小麦基因组多样性:促进全球粮食安全作物育种和生物技术改进的基础基因组序列和资源
- 批准号:
2322957 - 财政年份:2024
- 资助金额:
$ 400万 - 项目类别:
Standard Grant
Collaborative Research: RUI: RESEARCH-PGR Meeting Future Food Demands: Phosphoproteomics to Unravel Signaling Pathways in Soybean's Response to Phosphate and Iron Deficiency
合作研究:RUI:RESEARCH-PGR 满足未来食品需求:磷酸蛋白质组学揭示大豆对磷酸盐和铁缺乏的反应的信号通路
- 批准号:
2329894 - 财政年份:2024
- 资助金额:
$ 400万 - 项目类别:
Standard Grant