EAGER: Polymer Sponge Electrodes for Energy-Efficient Desalination

EAGER:用于节能海水淡化的聚合物海绵电极

基本信息

  • 批准号:
    2131282
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Current seawater desalination technology is energy-intensive and costly, limiting our ability to generate clean water for an increasing global population. In recent years, researchers have explored a new concept based on the removal of salt from seawater using a battery-like device where salt water flows into the device, salt ions bind to electrodes within the device, and fresh water flows out. One would expect this technology, called capacitive deionization (CDI), to maximize the energy efficiency of desalination by recovering input energy through discharge of the electrodes—similar to charging and discharging a battery. However, the performance of CDI devices has not yet been competitive for seawater desalination. Researchers at the University of Missouri will work to understand the origins of the poor performance of CDI electrodes for seawater desalination and overcome these limitations to boost the energy efficiency of CDI. The investigators will decouple and independently study the two main factors thought to drive CDI inefficiency – low ion uptake capacity and slow ion transport within CDI electrodes. Electrically conductive coatings that bind large amounts of ions will be used to control the ion uptake capacity of electrodes, while a soft, compressible electrode matrix will be used to control the rate of ion transport within the electrodes using mechanical compression during charging. This work will fill a critical gap in understanding how electrode design aspects are coupled with physical processes to drive CDI performance. The outcomes of this project will define the most promising avenues for investigation in pursuit of the next generation of desalination technology.This project will establish a new modality of CDI electrode that integrates high-rate, faradaic surface reactions for rapid ion uptake within a soft, compressible sponge substrate for rapid ion transport within the CDI electrode through mechanical compression of the sponge. To generate these electrodes, researchers will employ established molecular layer deposition (MLD) chemistry using sequential reaction of gas-phase precursors to impregnate microporous polyurethane (PU) foams with electrically-conductive and redox-active polyethylenedioxythiophene (PEDOT) coatings. The project will (1) study key synthesis aspects enabling the fabrication of compressible CDI electrodes and (2) benchmark what level of CDI efficiency can be delivered from compressible electrodes. Researchers will study the impact of PEDOT thickness, foam void volume, and compression rate on the energy efficiency of ion uptake. This work will help researchers understand and overcome the barriers limiting the performance of existing CDI electrodes, potentially enabling CDI to outperform current seawater desalination technology and providing low-cost, clean water to help address global water scarcity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前的海水淡化技术是能源密集型和昂贵的,限制了我们为不断增加的全球人口生产清洁水的能力。近年来,研究人员探索了一种新的概念,该概念基于使用类似电池的设备从海水中去除盐,盐水流入设备,盐离子与设备内的电极结合,淡水流出。人们期望这种称为电容去离子(CDI)的技术通过电极放电回收输入能量(类似于电池的充电和放电)来最大限度地提高脱盐的能源效率。然而,CDI装置的性能对于海水淡化来说尚未具有竞争力。密苏里州大学的研究人员将致力于了解CDI电极用于海水淡化的不良性能的根源,并克服这些限制以提高CDI的能源效率。研究人员将解耦并独立研究被认为驱动CDI效率低下的两个主要因素-低离子吸收能力和CDI电极内的慢离子传输。结合大量离子的导电涂层将用于控制电极的离子吸收能力,而柔软的可压缩电极基质将用于在充电期间使用机械压缩来控制电极内的离子传输速率。这项工作将填补理解电极设计方面如何与物理过程相结合以推动CDI性能的关键空白。该项目将建立一种新的CDI电极模式,该模式集成了高速、法拉第表面反应,用于在柔软、可压缩的海绵基底内快速吸收离子,通过海绵的机械压缩在CDI电极内快速传输离子。为了产生这些电极,研究人员将采用已建立的分子层沉积(MLD)化学方法,使用气相前体的顺序反应,将微孔聚氨酯(PU)泡沫与导电和氧化还原活性聚乙烯二氧噻吩(PEDOT)涂层结合起来。该项目将(1)研究关键的合成方面,使可压缩的CDI电极的制造和(2)基准什么水平的CDI效率可以从可压缩的电极提供。研究人员将研究PEDOT厚度、泡沫空隙体积和压缩率对离子吸收能量效率的影响。这项工作将帮助研究人员了解和克服限制现有CDI电极性能的障碍,有可能使CDI超越当前的海水淡化技术,并提供低成本的清洁水,以帮助解决全球水资源短缺问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compressible sponge electrodes by oxidative molecular layer deposition (oMLD) of polyethylenedioxythiophene (PEDOT) onto open-cell polyurethane sponges
  • DOI:
    10.1088/1361-6528/acef2b
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Mahya Mehregan;D. Stalla;Gabe Luebbert;Lauren Baratta;Katrina G. Brathwaite;Quinton K. Wyatt;Nikhila C Paranamana;M. Young
  • 通讯作者:
    Mahya Mehregan;D. Stalla;Gabe Luebbert;Lauren Baratta;Katrina G. Brathwaite;Quinton K. Wyatt;Nikhila C Paranamana;M. Young
Oxidative Molecular Layer Deposition of Amine-Containing Conjugated Polymer Thin Films
含胺共轭聚合物薄膜的氧化分子层沉积
  • DOI:
    10.1021/acsapm.2c00942
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Wyatt, Quinton K.;Vaninger, Mitchel;Paranamana, Nikhila C.;Heitmann, Thomas W.;Kaiser, Helmut;Young, Matthias J.
  • 通讯作者:
    Young, Matthias J.
Effects of film thickness on electrochemical properties of nanoscale polyethylenedioxythiophene (PEDOT) thin films grown by oxidative molecular layer deposition (oMLD)
  • DOI:
    10.1039/d3nr00708a
  • 发表时间:
    2023-03-02
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Brathwaite,Katrina G.;Wyatt,Quinton K.;Young,Matthias J.
  • 通讯作者:
    Young,Matthias J.
Mechanistic Insights into Oxidative Molecular Layer Deposition of Conjugated Polymers
共轭聚合物氧化分子层沉积的机理见解
  • DOI:
    10.1021/acs.chemmater.2c02923
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Wyatt, Quinton K.;Brathwaite, Katrina G.;Ardiansyah, Muhammad;Paranamana, Nikhila C.;Brorsen, Kurt R.;Young, Matthias J.
  • 通讯作者:
    Young, Matthias J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Young其他文献

Matthias Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Young', 18)}}的其他基金

CAREER: Molecular-level Understanding of Conductive Polymer Properties
职业:对导电聚合物特性的分子水平理解
  • 批准号:
    2235161
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
I-Corps: Molecular layer deposition for polymer cathode fabrication
I-Corps:用于聚合物阴极制造的分子层沉积
  • 批准号:
    2344900
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Understanding interphase layer formation at the cathode/solid-electrolyte junction
了解阴极/固体电解质连接处的界面层形成
  • 批准号:
    2219060
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

大面积polymer-NP-MOFs复合薄膜的构筑及光催化选择性加氢研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CNT网络/Polymer复合材料力学性能的多尺度数值模拟研究
  • 批准号:
    11602270
  • 批准年份:
    2016
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
高阻隔主动包装SiOx/Polymer复合薄膜的磁控共溅射制备及反应路径研究
  • 批准号:
    51302054
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于金纳米颗粒/Polymer复合结构的MEMS嵌入式高灵敏度力敏检测元件基础研究
  • 批准号:
    51105345
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Removal of Perfluorinated Chemicals Using New Fluorinated Polymer Sorbents
使用新型氟化聚合物吸附剂去除全氟化化学品
  • 批准号:
    LP220100036
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Linkage Projects
CAREER: atomistic characterization of protein-polymer conjugates
职业:蛋白质-聚合物缀合物的原子表征
  • 批准号:
    2339330
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
  • 批准号:
    2340208
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
  • 批准号:
    2406256
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
  • 批准号:
    24K17743
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Engineering optically recyclable polymer resins for sustainable additive manufacturing
工程光学可回收聚合物树脂用于可持续增材制造
  • 批准号:
    2400010
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Travel Support: A Short Course on The Polymer Physics of Additive Manufacturing; 2024 American Physical Society (APS) Meeting; Minneapolis, Minnesota; 2-3 March 2024
差旅支持:增材制造聚合物物理短期课程;
  • 批准号:
    2403712
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
PFI-TT: Commercial scale production of aligned polymer nanofiber materials and yarns
PFI-TT:定向聚合物纳米纤维材料和纱线的商业规模生产
  • 批准号:
    2345785
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
REU Site: Polymer Innovation for a Sustainable Future
REU 网站:聚合物创新打造可持续未来
  • 批准号:
    2348780
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了