Understanding interphase layer formation at the cathode/solid-electrolyte junction

了解阴极/固体电解质连接处的界面层形成

基本信息

  • 批准号:
    2219060
  • 负责人:
  • 金额:
    $ 53.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Improving the safety and performance of lithium-ion batteries is necessary to support a broad range of technologies from consumer electronics to electric vehicles. Current lithium-ion batteries employ organic liquid electrolytes that allow lithium ions to move rapidly between battery electrodes during charge and discharge. But these liquid electrolytes are flammable and allow for the growth of lithium metal tendrils (referred to as dendrites) between the electrodes, leading to the risk of short-circuiting and runaway cell reaction. Over the last 30 years, researchers have been working to develop solid electrolyte materials to replace liquid electrolytes in lithium-ion batteries for improved safety, lifetime, and energy density. However, these electrolyte materials fail rapidly in battery test cells. Researchers at the University of Missouri will work to understand the origins of failure in these electrolytes arising from reactions between the solid electrolyte and the cathode of the battery. To accomplish this, University of Missouri researchers will isolate and understand the individual contributions of different reactive species on the overall failure behavior using a combination of species-selective membrane coatings, electron microscopy, and electrochemical characterization. This research will fill a critical gap in understanding of the reactions that underpin failure of solid electrolytes and is expected to help researchers develop safer and higher performance batteries. These research activities will be complemented with the development of hands-on interactive learning modules to make electron microscopy measurements of battery interfaces tangible and engaging for early high-school students.This project will establish mechanistic understanding of interphase formation between oxide cathode materials and sulfide solid electrolytes. Researchers will employ advanced transmission electron microscopy and other complementary characterization techniques to observe interphase formation between nickel-cobalt-manganese (NMC) cathode powder and Li10GeP2S12 (LGPS) SE with and without nanoscale polymer membrane coatings formed on the NMC cathode using molecular layer deposition (MLD). These MLD membrane coatings are tunable as single or mixed conductors of electrons, cations, and anions and will help serve to isolate and understand each of these species’ contributions to interphase formation reactions. The project will (1) understand native cathode/solid electrolyte interphase formation versus the state of charge of the cathode, (2) understand the role of electrons, cations, and anions in cathode/electrolyte interphase formation, and (3) understand the impact of barrier coatings on solid state battery performance. This work will help researchers rationally propose solutions to block unwanted reactions while preserving desirable functional properties at the cathode/solid electrolyte interface.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
提高锂离子电池的安全性和性能对于支持从消费电子产品到电动汽车的广泛技术是必要的。目前的锂离子电池采用有机液体电解质,其允许锂离子在充电和放电期间在电池电极之间快速移动。但是这些液体电解质是易燃的,并且允许锂金属卷须(称为枝晶)在电极之间生长,导致短路和失控电池反应的风险。在过去的30年里,研究人员一直致力于开发固体电解质材料,以取代锂离子电池中的液体电解质,以提高安全性,寿命和能量密度。然而,这些电解质材料在电池测试电池中迅速失效。密苏里州大学的研究人员将致力于了解这些电解质失效的根源,这些电解质是由固体电解质和电池阴极之间的反应引起的。为了实现这一目标,密苏里州大学的研究人员将使用物种选择性膜涂层,电子显微镜和电化学表征的组合来隔离和了解不同活性物种对整体失效行为的单独贡献。这项研究将填补理解固体电解质失效的反应的关键空白,并有望帮助研究人员开发更安全,更高性能的电池。这些研究活动将与实践互动学习模块的开发相辅相成,使电池界面的电子显微镜测量切实可行,并吸引早期高中学生。该项目将建立氧化物阴极材料和硫化物固体电解质之间的界面形成的机械理解。研究人员将采用先进的透射电子显微镜和其他补充表征技术,观察镍钴锰(NMC)阴极粉末和Li 10 GeP 2S 12(LGPS)SE之间的界面形成,使用分子层沉积(MLD)在NMC阴极上形成纳米级聚合物膜涂层。这些MLD膜涂层可作为电子、阳离子和阴离子的单一或混合导体进行调节,并将有助于分离和理解这些物质中的每一种对相间形成反应的贡献。该项目将(1)了解天然阴极/固体电解质界面形成与阴极充电状态,(2)了解电子,阳离子和阴离子在阴极/电解质界面形成中的作用,以及(3)了解屏障涂层对固态电池性能的影响。这项工作将帮助研究人员合理地提出解决方案,以阻止不必要的反应,同时保持阴极/固体电解质界面的理想功能特性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring Local Atomic Structure Variations through the Depth of Ultrathin (<20 nm) ALD Aluminum Oxide: Implications for Lithium-Ion Batteries
  • DOI:
    10.1021/acsanm.2c02312
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Nikhila C Paranamana;Ryan C. Gettler;Henry D Koenig;S. Montgomery-Smith;Xiaoqing He;M. Young
  • 通讯作者:
    Nikhila C Paranamana;Ryan C. Gettler;Henry D Koenig;S. Montgomery-Smith;Xiaoqing He;M. Young
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Young其他文献

Matthias Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Young', 18)}}的其他基金

CAREER: Molecular-level Understanding of Conductive Polymer Properties
职业:对导电聚合物特性的分子水平理解
  • 批准号:
    2235161
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Continuing Grant
I-Corps: Molecular layer deposition for polymer cathode fabrication
I-Corps:用于聚合物阴极制造的分子层沉积
  • 批准号:
    2344900
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Standard Grant
EAGER: Polymer Sponge Electrodes for Energy-Efficient Desalination
EAGER:用于节能海水淡化的聚合物海绵电极
  • 批准号:
    2131282
  • 财政年份:
    2021
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Organic Structure and Interphase Engineering for Fast-Charging, High-Temperature and Sustainable Batteries
职业:快速充电、高温和可持续电池的有机结构和相间工程
  • 批准号:
    2419947
  • 财政年份:
    2024
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Continuing Grant
ERI: Interphase Evolution and Electrochemical Behavior for Highly Reversible Zinc Metal Anodes
ERI:高度可逆锌金属阳极的相间演化和电化学行为
  • 批准号:
    2301719
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
    Standard Grant
In vivo precision genome editing to correct genetic disease
体内精准基因组编辑以纠正遗传疾病
  • 批准号:
    10771419
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
Establishing and Optimizing a Prime Editing Method in Neurons for Treatment of Rett Syndrome
建立和优化用于治疗 Rett 综合征的神经元素数编辑方法
  • 批准号:
    10607549
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
Lentivirus Construct Core
慢病毒构建核心
  • 批准号:
    10630391
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
Investigating the impact and dynamic of mitochondrial common deletion in somatic cells
研究体细胞线粒体常见缺失的影响和动态
  • 批准号:
    10826448
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
The role of cis-regulatory elements in the inheritance of transcriptional memory through mitosis.
顺式调节元件在通过有丝分裂遗传转录记忆中的作用。
  • 批准号:
    10751881
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
The gene regulatory functions of condensin
凝缩蛋白的基因调控功能
  • 批准号:
    10621514
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
Effect of Dietary Carbohydrate on Diabetes Control and Beta Cell Function in Children with Newly Diagnosed Diabetes.”
膳食碳水化合物对新诊断糖尿病儿童的糖尿病控制和 β 细胞功能的影响。
  • 批准号:
    10637032
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
Precision Apheresis: stem cell isolation from patients with sickle cell disease for gene therapy using high-throughput microfluidics
精密血浆分离术:使用高通量微流控技术从镰状细胞病患者中分离干细胞进行基因治疗
  • 批准号:
    10723247
  • 财政年份:
    2023
  • 资助金额:
    $ 53.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了