Discrete Variable Stiffness Actuators with Fast Stiffness Switch for Safe Human-Robot Interaction

具有快速刚度开关的离散可变刚度执行器,可实现安全的人机交互

基本信息

  • 批准号:
    2131711
  • 负责人:
  • 金额:
    $ 55.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Human-robot co-working is at the human-technology frontier of the future of work, one of NSF’s “10 Big Ideas.” Co-robots allow the full use of human intelligence and robot precision and strength to improve the combined performance as a team in various scenarios including manufacturing, logistics, military, medical care, home companion and others. A fundamental challenge for the development of co-robots is balancing high performance and ensuring human safety. With respect to rigidity, achieving high performance (high accuracy and payload) often relies on high stiffness co-robots, while safe interactions with humans often requires low stiffness. This work conducts fundamental research on compliant robot stiffness by researching a new concept of discrete variable stiffness actuators and developing a systematic design methodology with high-performance control algorithms, validated by experimental tests. Based on this, a new generation of robot manipulators with switchable compliance for safe human-robot co-working is envisioned in the near future. Moreover, the developed compliant actuators will benefit the robotics industry with adaptable compliant dynamics enabled by variable stiffness on walking robots, exoskeletons, entertainment, medical and education robotics with human robot physical interactions and needs of intrinsic safety. The developed technology will enhance the US’s high-tech capability and benefit its economy. The integrated research and education work will encourage and inspire young students to join engineering majors through STEM workshops and hands-on activities. The early engagement and curriculum introduction to K-12 underrepresented students will contribute to preparing the future workforce with robotics skills, knowledge, and interests for advanced manufacturing in the “Industry 4.0” era. The project discrete variable stiffness actuators (DVSAs) contribute to the fundamental robotics research on developing compliant actuators that are central to synergistic human-robot collaboration. The new actuator concept avoids issues with existing variable stiffness actuators (VSAs) relying on continuous stiffness change mechanisms and brings a discrete design methodology for fast stiffness level selection, low power consumption, zero back driving force in stiffness change, and compact designs. The project will deliver (1) a design criterion in determining representative discrete stiffness levels by covering both human and robot safety, (2) a design synthesis method in developing discrete variable stiffness mechanisms for DVSAs, (3) detailed discrete stiffness change dynamics modelling considering the mechanical engagement process, (4) optimal control algorithms for DVSA operation stability and human-robot safe interaction, (5) experimental and simulation data verifying the design and control methods, and (6) open software and hardware platforms including a modular DVSA actuator and a 3-DOF compliant arm.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人机协同工作是未来工作的人类技术前沿,也是NSF的“十大想法”之一。协作机器人允许充分利用人类的智能和机器人的精度和力量,以提高包括制造,物流,军事,医疗保健,家庭伴侣等各种场景中的团队综合性能。开发协作机器人的一个根本挑战是平衡高性能和确保人类安全。在刚性方面,实现高性能(高精度和有效载荷)通常依赖于高刚度的协作机器人,而与人类的安全交互通常需要低刚度。本研究通过研究离散变刚度执行器的新概念,开发具有高性能控制算法的系统设计方法,并通过实验测试进行验证,对柔顺机器人刚度进行了基础研究。在此基础上,新一代的机器人操作器与切换符合安全的人机协同工作的设想在不久的将来。此外,所开发的顺应性致动器将使机器人行业受益,其具有可适应的顺应性动力学,这些动力学通过步行机器人、外骨骼、娱乐、医疗和教育机器人的可变刚度实现,具有人类机器人的物理交互和本质安全的需求。这些技术的发展将提高美国的高科技能力,并有利于其经济。综合研究和教育工作将鼓励和激励年轻学生通过STEM研讨会和实践活动加入工程专业。早期参与和课程介绍K-12代表性不足的学生将有助于准备未来的劳动力与机器人技术,知识和兴趣的先进制造业在“工业4.0”时代。该项目离散变刚度执行器(DVSA)有助于基础机器人研究开发的顺应性致动器,协同人机协作的核心。新的致动器概念避免了现有可变刚度致动器(VSA)依赖于连续刚度变化机制的问题,并带来了用于快速刚度水平选择、低功耗、刚度变化中的零反向驱动力和紧凑设计的离散设计方法。该项目将提供(1)通过涵盖人类和机器人安全性来确定代表性离散刚度水平的设计标准,(2)开发DVSA离散可变刚度机构的设计综合方法,(3)考虑机械接合过程的详细离散刚度变化动力学建模,(4)DVSA操作稳定性和人机安全交互的最佳控制算法,(5)验证设计和控制方法的实验和仿真数据,以及(6)开放的软件和硬件平台,包括模块化DVSA致动器和3-DOF柔性臂。由工程局(ENG)和计算机与信息科学与工程局(CISE)共同管理和资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel Variable Stiffness Compliant Robotic Link Based on Discrete Variable Stiffness Units for Safe Human-Robot Interaction
基于离散变刚度单元的新型变刚度兼容机器人连杆,实现安全人机交互
Actuation-Coordinated Mobile Parallel Robots With Hybrid Mobile and Manipulation Functions
具有混合移动和操纵功能的驱动协调移动并联机器人
  • DOI:
    10.1115/1.4053821
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gan, Dongming;Fu, Jiaming;Lin, Han;Yang, Haoguang;Rastgaar, Mo;Min, Byung-Cheol;Voyles, Richard
  • 通讯作者:
    Voyles, Richard
Design and Modeling of a New Variable Stiffness Robotic Finger Based on Reconfigurable Beam Property Change for Flexible Grasping
基于可重构梁特性变化的新型变刚度机器人手指柔性抓取的设计与建模
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dongming Gan其他文献

Strictly Decentralized Approaches for Multi-Robot Grasp Coordination
多机器人抓取协调的严格分散方法
Safe controller design for circular motion of a bicycle robot using control Lyapunov function and control barrier function
基于控制李雅普诺夫函数和控制障碍函数的自行车机器人圆周运动安全控制器设计
  • DOI:
    10.1016/j.isatra.2024.12.020
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Lei Guo;Hongyu Lin;Yuan Song;Yufeng Zhuang;Dongming Gan
  • 通讯作者:
    Dongming Gan
Engineering of electrodes with 2D Tisub3/subCsub2/subTsubx/sub-MXene sheets and chloride salt for robust and flexible high electrical power triboelectric nanogenerator
具有二维 Ti₃C₂Tx-MXene 片材和氯化物盐的电极工程,用于坚固且灵活的高功率摩擦纳米发电机
  • DOI:
    10.1016/j.cej.2023.144281
  • 发表时间:
    2023-08-15
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Shoaib Anwer;Muhammad Umair Khan;Baker Mohammad;Moh'd Rezeq;Wesley Cantwell;Dongming Gan;Lianxi Zheng
  • 通讯作者:
    Lianxi Zheng
Joint force decomposition and variation in unified inverse dynamics analysis of a metamorphic parallel mechanism
变质并联机构统一逆动力学分析中的关节力分解与变分
  • DOI:
    10.1007/s11012-015-0216-y
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Dongming Gan;Jian Dai;Jorge Dias;Lakmal Seneviratne
  • 通讯作者:
    Lakmal Seneviratne
A nearly optimal adaptive saturation function tuning method for quasi-sliding mode control based on integral reinforcement learning
基于积分强化学习的准滑模控制的一种近乎最优的自适应饱和函数整定方法
  • DOI:
    10.1016/j.neucom.2025.129363
  • 发表时间:
    2025-03-28
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Lei Guo;Wenbo Xiong;Han Zhao;Yuan Song;Dongming Gan
  • 通讯作者:
    Dongming Gan

Dongming Gan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dongming Gan', 18)}}的其他基金

I-Corps: Collaborative robotics using discrete variable stiffness actuators
I-Corps:使用离散可变刚度执行器的协作机器人
  • 批准号:
    2232026
  • 财政年份:
    2022
  • 资助金额:
    $ 55.59万
  • 项目类别:
    Standard Grant

相似国自然基金

Drp1—Variable结构域在继发性脊髓损伤中调节线粒体功能的机制研究
  • 批准号:
    81974335
  • 批准年份:
    2019
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
基于蛋白质组学和代谢组学整合分析的Paraconiothyrium variable GHJ-4降解木质素的分子机制
  • 批准号:
    31200450
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Collaborative robotics using discrete variable stiffness actuators
I-Corps:使用离散可变刚度执行器的协作机器人
  • 批准号:
    2232026
  • 财政年份:
    2022
  • 资助金额:
    $ 55.59万
  • 项目类别:
    Standard Grant
High-Back Drivable Variable Stiffness Robot Arm that Reproduces Strength and 'datsuryoku' for Human
再现人类力量和“datsuryoku”的高背可驱动可变刚度机器人手臂
  • 批准号:
    22K14250
  • 财政年份:
    2022
  • 资助金额:
    $ 55.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Variable Stiffness Actuation for Bioinspired Underwater Propulsion
用于仿生水下推进的可变刚度驱动
  • 批准号:
    2427820
  • 财政年份:
    2020
  • 资助金额:
    $ 55.59万
  • 项目类别:
    Studentship
Development of robot for which all body parts have variable stiffness and sensitivity
开发所有身体部位具有可变刚度和灵敏度的机器人
  • 批准号:
    20K04401
  • 财政年份:
    2020
  • 资助金额:
    $ 55.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A High Resolution Tactile Display Based on Variable Stiffness Polymer and Pneumatic Actuation
基于可变刚度聚合物和气动驱动的高分辨率触觉显示器
  • 批准号:
    10626032
  • 财政年份:
    2020
  • 资助金额:
    $ 55.59万
  • 项目类别:
Variable Stiffness Compliant Mechanisms and Robots Based on Layer Jamming
基于层干扰的变刚度柔顺机构和机器人
  • 批准号:
    2019648
  • 财政年份:
    2020
  • 资助金额:
    $ 55.59万
  • 项目类别:
    Standard Grant
Mechanical behavior and failure of variable stiffness composite materials
变刚度复合材料的力学行为和失效
  • 批准号:
    551760-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 55.59万
  • 项目类别:
    University Undergraduate Student Research Awards
A High Resolution Tactile Display Based on Variable Stiffness Polymer and Pneumatic Actuation
基于可变刚度聚合物和气动驱动的高分辨率触觉显示器
  • 批准号:
    10401804
  • 财政年份:
    2020
  • 资助金额:
    $ 55.59万
  • 项目类别:
A High Resolution Tactile Display Based on Variable Stiffness Polymer and Pneumatic Actuation
基于可变刚度聚合物和气动驱动的高分辨率触觉显示器
  • 批准号:
    9886562
  • 财政年份:
    2020
  • 资助金额:
    $ 55.59万
  • 项目类别:
Soft Robotic Manipulators With Variable Stiffness Actuation
具有可变刚度驱动的软机器人操纵器
  • 批准号:
    2170338
  • 财政年份:
    2019
  • 资助金额:
    $ 55.59万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了