Collaborative Research: Self-Identification for Robot Manipulation under Uncertainty Aided by Passive Adaptability
协作研究:被动适应性辅助的不确定性下机器人操纵的自我识别
基本信息
- 批准号:2133110
- 负责人:
- 金额:$ 39.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant supports research that will contribute novel knowledge at the intersection of robotic manipulation and active perception, promoting both the progress of science and the advancement of national prosperity. To enable general-purpose robots that can offer sophisticated physical interactions with the world, the capability of robots to work under limited perception is essential. However, as traditional approaches sequentially formulate perception and manipulation into decoupled system components, robot manipulation skills have been passively constrained by the perception system. This award supports research to establish a new paradigm for enabling the interactions between perception and manipulation, and will fundamentally transform the roles of both to actively facilitate each other. The key concept, termed as self-identification, is a process where robots start to manipulate objects without full knowledge of the system, or even of itself, while in the meantime creating opportunities for the perception component to acquire necessary information that were impossible otherwise. In turn, the manipulation capability is significantly upgraded with the extra information obtained. As this new ability can improve many real-world robot applications, such as industrial production, household services, and healthcare applications, the results from this research will benefit the U.S. economy and society. This research involves several topics ranging from computer science, mechanical engineering, and sensor technology, to control theory and artificial intelligence. The multi-disciplinary framework will broaden the participation of underrepresented groups and positively impact the engineering education.This project leverages various types of passive (or low-level) adaptability in robot manipulators, especially that coming from mechanical compliance (springs or soft structures), low-level impedance control, or underactuated mechanisms, to allow the robot to conduct exploratory motions that are externally observed and used within an adaptive estimation scheme to self-identify the system. The robot-object-environment system will be actively reconfigured while maintaining the desired states and stability in an essentially open-loop way, while external observations of these changes are used to generate online estimations and controllers. Essentially, it changes the traditional paradigm from “sense, plan, act” to “act, sense, plan”, with an emphasis on efficient and effective task execution under limited sensing. The research team will establish generic self-identification frameworks for model-complete, model-incomplete, and model-free manipulation systems to: 1) compensate for limited perception abilities, where needed, to accomplish tasks that are traditionally infeasible; 2) maximize their perception capabilities to further improve the system’s task-awareness and robustness; and 3) incorporate the results or the entire process of self-identification into manipulation planning and control to enable robust manipulation under physical and sensing limitations.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款支持将在机器人操纵和主动感知交叉领域贡献新知识的研究,从而促进科学进步和国家繁荣。为了使通用机器人能够与世界提供复杂的物理交互,机器人在有限感知下工作的能力至关重要。然而,由于传统方法将感知和操纵依次形成解耦的系统组件,机器人的操纵技能被动地受到感知系统的限制。该奖项支持研究建立一种新的范式,以实现感知和操纵之间的相互作用,并将从根本上改变两者的角色,以积极促进彼此。被称为自我识别的关键概念是机器人在不完全了解系统甚至自身的情况下开始操纵物体的过程,同时为感知组件创造机会获取必要的信息,否则这是不可能的。反过来,随着获得的额外信息,操纵能力显着提升。由于这种新能力可以改善许多现实世界的机器人应用,例如工业生产、家庭服务和医疗保健应用,因此这项研究的结果将有利于美国经济和社会。这项研究涉及计算机科学、机械工程、传感器技术、控制理论和人工智能等多个主题。多学科框架将扩大代表性不足群体的参与,并对工程教育产生积极影响。该项目利用机器人机械手的各种类型的被动(或低水平)适应性,特别是来自机械顺应性(弹簧或软结构)、低水平阻抗控制或欠驱动机构的适应性,使机器人能够进行外部观察和内部使用的探索性运动。 用于自我识别系统的自适应估计方案。机器人-物体-环境系统将被主动重新配置,同时以基本上开环的方式保持所需的状态和稳定性,同时对这些变化的外部观察用于生成在线估计和控制器。本质上,它将传统范式从“感知、计划、行动”转变为“行动、感知、计划”,强调有限感知下高效、有效的任务执行。研究团队将为模型完整、模型不完整和无模型操纵系统建立通用的自我识别框架,以:1)在需要时补偿有限的感知能力,以完成传统上不可行的任务; 2)最大化其感知能力,进一步提高系统的任务感知能力和鲁棒性; 3)将自我识别的结果或整个过程纳入操纵规划和控制中,以实现在物理和传感限制下的鲁棒操纵。该项目得到了机器人学跨部门基础研究计划的支持,该计划由工程理事会(ENG)和计算机与信息科学与工程理事会(CISE)共同管理和资助。该奖项反映了 NSF 的法定使命,并通过使用 基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-Parametric Self-Identification and Model Predictive Control of Dexterous In-Hand Manipulation
灵巧手操纵的非参数自辨识与模型预测控制
- DOI:10.1109/iros55552.2023.10341520
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chanrungmaneekul, Podshara;Ren, Kejia;Grace, Joshua T.;Dollar, Aaron M.;Hang, Kaiyu
- 通讯作者:Hang, Kaiyu
Rearrangement-Based Manipulation via Kinodynamic Planning and Dynamic Planning Horizons
通过运动动力学规划和动态规划视野进行基于重排的操纵
- DOI:10.1109/iros47612.2022.9981599
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ren, Kejia;Kavraki, Lydia E.;Hang, Kaiyu
- 通讯作者:Hang, Kaiyu
Kinodynamic Rapidly-exploring Random Forest for Rearrangement-Based Nonprehensile Manipulation
用于基于重排的不可理解操纵的运动动力学快速探索随机森林
- DOI:10.1109/icra48891.2023.10161560
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ren, Kejia;Chanrungmaneekul, Podshara;Kavraki, Lydia E.;Hang, Kaiyu
- 通讯作者:Hang, Kaiyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaiyu Hang其他文献
Reinforcement Learning in Topology-based Representation for Human Body Movement with Whole Arm Manipulation
基于拓扑表示的强化学习全臂操纵人体运动
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Weihao Yuan;Kaiyu Hang;Haoran Song;D. Kragic;M. Wang;J. A. Stork - 通讯作者:
J. A. Stork
Multi-Object Rearrangement with Monte Carlo Tree Search: A Case Study on Planar Nonprehensile Sorting
使用蒙特卡罗树搜索进行多对象重排:平面非全面排序的案例研究
- DOI:
10.1109/iros45743.2020.9341532 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Haoran Song;Joshua A. Haustein;Weihao Yuan;Kaiyu Hang;M. Wang;D. Kragic;J. A. Stork - 通讯作者:
J. A. Stork
Object Placement Planning and optimization for Robot Manipulators
机器人操纵器的对象放置规划和优化
- DOI:
10.1109/iros40897.2019.8967732 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Joshua A. Haustein;Kaiyu Hang;J. A. Stork;D. Kragic - 通讯作者:
D. Kragic
Dual-Arm In-Hand Manipulation Using Visual Feedback
使用视觉反馈的双臂手动操作
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. Cruciani;Kaiyu Hang;Christian Smith;D. Kragic - 通讯作者:
D. Kragic
Herding by caging: a formation-based motion planning framework for guiding mobile agents
笼养:一种基于编队的运动规划框架,用于引导移动代理
- DOI:
10.1007/s10514-021-09975-8 - 发表时间:
2021 - 期刊:
- 影响因子:3.5
- 作者:
Haoran Song;Anastasiia Varava;O. Kravchenko;D. Kragic;M. Wang;Florian T. Pokorny;Kaiyu Hang - 通讯作者:
Kaiyu Hang
Kaiyu Hang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaiyu Hang', 18)}}的其他基金
CAREER: Exploring Robust Robot Manipulation through Compliance- and Motion-based Manipulation Funnels
职业:通过基于顺应性和运动的操纵漏斗探索鲁棒的机器人操纵
- 批准号:
2240040 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231077 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
- 批准号:
2409880 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329674 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329675 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
- 批准号:
2247880 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Continuing Grant
Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
- 批准号:
2324916 - 财政年份:2023
- 资助金额:
$ 39.9万 - 项目类别:
Standard Grant














{{item.name}}会员




