CAREER: Exploring Robust Robot Manipulation through Compliance- and Motion-based Manipulation Funnels
职业:通过基于顺应性和运动的操纵漏斗探索鲁棒的机器人操纵
基本信息
- 批准号:2240040
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) award supports research in general-purpose robotic manipulation in unstructured environments. Most real-world manipulation tasks involve uncertainties, un-modellable physics, and unknown parameters, where traditional approaches for precise planning and control have been hitting a hard limit. This award supports research that seeks to establish a novel paradigm that enables robots to handle uncertainties and unknowns through the lens of “manipulation funnels.” The concept of manipulation funnel is the same as that of an ordinary use funnel, wherein the idea is to filter a large set of task possibilities through a restrictive neck, defined by robot compliance or motion strategy, to a smaller set ensuring that the subsequent robot actions are robust against uncertainties. This new paradigm will improve real-world robot applications, such as those used in industrial production, household services, and healthcare. The award will also support several STEM initiatives, with focus on broadening participation to underrepresented groups, including hands-on robotic manipulation tutorials and an accompanying book, curriculum enhancement with research outcomes, and research opportunities for undergraduate and K-12 students.The objective of this project is to depart from the traditional pipeline of perception, planning, and control for robotic manipulation by generalizing the idea of geometric manipulation funnels in task space to new classes of funnels based on robot compliance and motion strategy for robust and dexterous manipulation against environmental uncertainties. Within this context, the focus is on identifying the entries, shaping the necks, and finding the exits in these new classes of manipulation funnels. For example, by leveraging active or passive compliance, funnels that are initially blocked can be can actively “opened” to precisely manipulate objects through self-stabilizing task formations and facilitate contact-rich manipulation with enlarged planning spaces and simplified control. Similarly, by leveraging motions and task constraints, funnels can be actively created to cage the state transitions in time to effectively reduce uncertainties or even directly figure out the mapping from uncertain manipulation inputs to their possible outputs. Furthermore, by transferring funnels through tasks and composing multi-modal manipulation solutions via funnel concatenations, the proposed funnel-based framework will enable complex manipulation tasks while firmly guaranteeing robustness. As a result, this project will enable robots to manipulate through a non-traditional but more reliable framework, allowing them to work in highly uncertain scenarios that were traditionally infeasible.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)奖支持非结构化环境中通用机器人操作的研究。大多数现实世界的操纵任务都涉及不确定性、不可建模的物理场和未知的参数,传统的精确规划和控制方法已经遇到了硬性限制。该奖项支持旨在建立一种新颖范式的研究,使机器人能够通过“操纵漏斗”的镜头处理不确定性和未知因素。操纵漏斗的概念与普通使用漏斗的概念相同,其中的想法是通过由机器人顺应性或运动策略定义的限制性颈部将大量任务可能性过滤为较小的集合,以确保后续机器人动作对不确定性具有鲁棒性。这种新范例将改善现实世界的机器人应用,例如工业生产、家庭服务和医疗保健中使用的机器人应用。该奖项还将支持多项 STEM 计划,重点是扩大代表性不足群体的参与,包括机器人操作实践教程和随附书籍、研究成果的课程强化以及本科生和 K-12 学生的研究机会。该项目的目标是通过将几何操作漏斗的思想推广到机器人操作中,摆脱传统的机器人操作感知、规划和控制流程。 基于机器人顺应性和运动策略的新型漏斗的任务空间,可针对环境不确定性进行稳健而灵巧的操作。在此背景下,重点是识别这些新类型的操纵漏斗中的入口、塑造瓶颈并找到出口。例如,通过利用主动或被动的顺从性,最初被堵塞的漏斗可以主动“打开”,通过自稳定任务形态精确地操纵物体,并通过扩大的规划空间和简化的控制来促进丰富的接触操纵。类似地,通过利用运动和任务约束,可以主动创建漏斗来及时捕获状态转换,以有效减少不确定性,甚至直接找出从不确定的操作输入到可能输出的映射。此外,通过任务转移漏斗并通过漏斗串联组成多模式操作解决方案,所提出的基于漏斗的框架将能够实现复杂的操作任务,同时坚定地保证鲁棒性。因此,该项目将使机器人能够通过非传统但更可靠的框架进行操作,使它们能够在传统上不可行的高度不确定的场景中工作。该项目得到了机器人学跨部门基础研究项目的支持,该项目由工程理事会(ENG)和计算机与信息科学与工程理事会(CISE)共同管理和资助。该奖项反映了 NSF 的法定使命,并已被 通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaiyu Hang其他文献
Reinforcement Learning in Topology-based Representation for Human Body Movement with Whole Arm Manipulation
基于拓扑表示的强化学习全臂操纵人体运动
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Weihao Yuan;Kaiyu Hang;Haoran Song;D. Kragic;M. Wang;J. A. Stork - 通讯作者:
J. A. Stork
Multi-Object Rearrangement with Monte Carlo Tree Search: A Case Study on Planar Nonprehensile Sorting
使用蒙特卡罗树搜索进行多对象重排:平面非全面排序的案例研究
- DOI:
10.1109/iros45743.2020.9341532 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Haoran Song;Joshua A. Haustein;Weihao Yuan;Kaiyu Hang;M. Wang;D. Kragic;J. A. Stork - 通讯作者:
J. A. Stork
Object Placement Planning and optimization for Robot Manipulators
机器人操纵器的对象放置规划和优化
- DOI:
10.1109/iros40897.2019.8967732 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Joshua A. Haustein;Kaiyu Hang;J. A. Stork;D. Kragic - 通讯作者:
D. Kragic
Dual-Arm In-Hand Manipulation Using Visual Feedback
使用视觉反馈的双臂手动操作
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. Cruciani;Kaiyu Hang;Christian Smith;D. Kragic - 通讯作者:
D. Kragic
Herding by caging: a formation-based motion planning framework for guiding mobile agents
笼养:一种基于编队的运动规划框架,用于引导移动代理
- DOI:
10.1007/s10514-021-09975-8 - 发表时间:
2021 - 期刊:
- 影响因子:3.5
- 作者:
Haoran Song;Anastasiia Varava;O. Kravchenko;D. Kragic;M. Wang;Florian T. Pokorny;Kaiyu Hang - 通讯作者:
Kaiyu Hang
Kaiyu Hang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaiyu Hang', 18)}}的其他基金
Collaborative Research: Self-Identification for Robot Manipulation under Uncertainty Aided by Passive Adaptability
协作研究:被动适应性辅助的不确定性下机器人操纵的自我识别
- 批准号:
2133110 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Exploring Changing Fertility Intentions in China
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
- 批准号:
2338159 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Exploring van der Waals Superconducting Josephson Junctions for Robust Qubits
RII Track-4:NSF:探索稳健量子位的范德华超导约瑟夫森结
- 批准号:
2327410 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Exploring Causality in Reinforcement Learning for Robust Decision Making
探索强化学习中的因果关系以实现稳健决策
- 批准号:
EP/Y003187/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Exploring Efficient Automated Design Choices for Robust Machine Learning Algorithms
探索稳健的机器学习算法的高效自动化设计选择
- 批准号:
2748823 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Studentship
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1841399 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作研究:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1823405 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Multi-source analyses exploring robust biomarkers for dementia
多源分析探索痴呆症的稳健生物标志物
- 批准号:
18K06193 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1823372 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作研究:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1823378 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作研究:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1823385 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant














{{item.name}}会员




