Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
基本信息
- 批准号:2003131
- 负责人:
- 金额:$ 18.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Reinforcement learning (RL) methods have met with renewed interest in recent years for adaptively configuring wireless networks. Despite the promising early results and the conceptual match, many existing approaches do not develop and tailor the RL methods to fit the unique characteristics of wireless networking. The goal of this project is to develop a novel domain knowledge enriched RL framework, or Dino-RL, to address this problem. The Dino-RL framework aims to seamlessly integrate the physical-law based modeling and an abstract episodic memory into the RL process, and has the potential to revamp the operation and management of future wireless networks. Developing this novel technology would also help maintain the nation's continued leadership in wireless technologies and its pipeline of highly qualified engineers. The project pursues synergistic activities for the successful design and implementation of Dino-RL, followed by a comprehensive, real-world data driven evaluation. Episodic RL is first studied with the objective to incorporate domain knowledge into building an efficient episodic memory. In addition, a hierarchical hidden variable model is built to enable meta-reinforcement learning for knowledge transfer and efficient exploration. Lastly, the conflict between enhancing the physical-law based modeling and reinforcement learning is balanced via novel sample-efficient model selection algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,强化学习(RL)方法在自适应配置无线网络方面重新引起了人们的兴趣。尽管有很有希望的早期结果和概念匹配,但许多现有的方法并没有开发和定制RL方法来适应无线网络的独特特征。该项目的目标是开发一个新的领域知识丰富的RL框架,或Dino-RL,以解决这一问题。Dino-RL框架旨在将基于物理定律的建模和抽象情节记忆无缝地集成到RL过程中,并具有改造未来无线网络运营和管理的潜力。开发这项新技术还将有助于保持美国在无线技术和高素质工程师队伍中的持续领先地位。该项目开展协同活动,以成功设计和实施Dino-RL,随后进行全面的、以真实世界数据为导向的评估。首次对情景记忆进行研究的目的是将领域知识融入到建立有效的情景记忆中。此外,还建立了分层隐变量模型,以实现元强化学习的知识转移和有效探索。最后,通过新的样本效率模型选择算法平衡了增强基于物理定律的建模和强化学习之间的冲突。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Safe Exploration Incurs Nearly No Additional Sample Complexity for Reward-free RL
- DOI:10.48550/arxiv.2206.14057
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ruiquan Huang;J. Yang;Yingbin Liang
- 通讯作者:Ruiquan Huang;J. Yang;Yingbin Liang
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
- DOI:10.48550/arxiv.2306.08364
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Chengshuai Shi;Wei Xiong;Cong Shen;Jing Yang
- 通讯作者:Chengshuai Shi;Wei Xiong;Cong Shen;Jing Yang
Federated Linear Contextual Bandits
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Ruiquan Huang;Weiqiang Wu;Jing Yang;Cong Shen
- 通讯作者:Ruiquan Huang;Weiqiang Wu;Jing Yang;Cong Shen
On Federated Learning with Energy Harvesting Clients
- DOI:10.1109/icassp43922.2022.9746608
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Cong Shen;Jing Yang;Jie Xu
- 通讯作者:Cong Shen;Jing Yang;Jie Xu
Near-optimal Conservative Exploration in Reinforcement Learning under Episode-wise Constraints
- DOI:10.48550/arxiv.2306.06265
- 发表时间:2023-06
- 期刊:
- 影响因子:2.4
- 作者:Donghao Li;Ruiquan Huang;Cong Shen;Jing Yang
- 通讯作者:Donghao Li;Ruiquan Huang;Cong Shen;Jing Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Yang其他文献
Upregulation of flotillin-1 promotes invasion and metastasis by activating TGF-β signaling in nasopharyngeal carcinoma
ïotillin-1 的上调通过激活 TGF-β 信号传导促进鼻咽癌的侵袭和转移
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sumei Cao;Yanmei Cui;Huiming Xiao;Miaoqing Mai;Chanjuan Wang;Shanghang Xie;Jing Yang;Shu Wu;Jun Li;Libing Song;Xiang Guo;Chuyong Lin - 通讯作者:
Chuyong Lin
Separation of gallium and aluminum from HCl solution by microemusion
微乳液法从HCl溶液中分离镓和铝
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.8
- 作者:
Jing Yang;Xidan Zhao;Yanzhao Yang - 通讯作者:
Yanzhao Yang
Hydrogen Bonding Character Between the Glycine and BF4
甘氨酸与BF4之间的氢键特征
- DOI:
10.1088/1674-0068/22/05/517-522 - 发表时间:
2009 - 期刊:
- 影响因子:1
- 作者:
Qin He;Jing Yang;Xiangying Meng - 通讯作者:
Xiangying Meng
Prediction of the crystal size distribution for reactive crystallization of barium carbonate under growth and nucleation mechanisms
生长和成核机制下碳酸钡反应结晶的晶体尺寸分布的预测
- DOI:
10.1021/acs.cgd.8b01067 - 发表时间:
2019 - 期刊:
- 影响因子:3.8
- 作者:
Wei Zhang;Fengzhen Zhang;Liping Ma;Jie Yang;Jing Yang;Huaping Xiang - 通讯作者:
Huaping Xiang
A Chinese Han pedigree with Huntington disease mimicking spinocerebellar ataxia
一个患有类似脊髓小脑共济失调的亨廷顿病的中国汉族家系
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4.4
- 作者:
Chengyuan Mao;Yun Su;Huiyun Wang;Liyuan Fan;Huimin Zheng;Tai Wang;Xinwei Li;Shuo Zhang;Zhengwei Hu;Haiyang Luo;Jing Yang;Changhe Shi;Yuming Xu - 通讯作者:
Yuming Xu
Jing Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Yang', 18)}}的其他基金
Collaborative Research: Optimized Testing Strategies for Fighting Pandemics: Fundamental Limits and Efficient Algorithms
合作研究:抗击流行病的优化测试策略:基本限制和高效算法
- 批准号:
2133170 - 财政年份:2022
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Timely Computing and Learning over Communication Networks
合作研究:CNS 核心:小型:通过通信网络进行及时计算和学习
- 批准号:
2114542 - 财政年份:2021
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Learning-Efficient Spectrum Access for No-Sensing Devices in Shared Spectrum
合作研究:SWIFT:SMALL:共享频谱中无感知设备的学习高效频谱访问
- 批准号:
2030026 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
CNS Core: Medium: When Next Generation Wireless Networks Meet Machine Learning
CNS 核心:中:当下一代无线网络遇到机器学习时
- 批准号:
1956276 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Development of a 3D human in vitro model of pancreatic beta cell health
开发胰腺 β 细胞健康的 3D 人体体外模型
- 批准号:
EP/N510099/1 - 财政年份:2017
- 资助金额:
$ 18.16万 - 项目类别:
Research Grant
CAREER: When Energy Harvesting Meets "Big Data": Designing Smart Energy Harvesting Wireless Sensor Networks
职业:当能量收集遇到“大数据”:设计智能能量收集无线传感器网络
- 批准号:
1650299 - 财政年份:2016
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: TrajAnalytics: A Cloud-Based Visual Analytics Software System to Advance Transportation Studies Using Emerging Urban Trajectory Data
SI2-SSE:合作研究:TrajAnalytics:基于云的视觉分析软件系统,利用新兴城市轨迹数据推进交通研究
- 批准号:
1535081 - 财政年份:2015
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
CAREER: When Energy Harvesting Meets "Big Data": Designing Smart Energy Harvesting Wireless Sensor Networks
职业:当能量收集遇到“大数据”:设计智能能量收集无线传感器网络
- 批准号:
1454471 - 财政年份:2015
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Visualizing Event Dynamics with Narrative Animation
EAGER:协作研究:用叙事动画可视化事件动态
- 批准号:
1352893 - 财政年份:2013
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
EAGER: Link Free Graph Visualization for Exploring Large Complex Graphs
EAGER:用于探索大型复杂图的链接自由图可视化
- 批准号:
0946400 - 财政年份:2009
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2203412 - 财政年份:2021
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002821 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002874 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003081 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Dino-RL: A Domain Knowledge Enriched Reinforcement Learning Framework for Wireless Network Optimization
合作研究:MLWiNS:Dino-RL:用于无线网络优化的领域知识丰富的强化学习框架
- 批准号:
2002902 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003098 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003111 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
- 批准号:
2003279 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: ANN for Interference Limited Wireless Networks
合作研究:MLWiNS:干扰有限无线网络的 ANN
- 批准号:
2003082 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Physical Layer Communication revisited via Deep Learning
合作研究:MLWiNS:通过深度学习重新审视物理层通信
- 批准号:
2002664 - 财政年份:2020
- 资助金额:
$ 18.16万 - 项目类别:
Standard Grant