Spindle Flux and Mechanics

主轴磁通和力学

基本信息

  • 批准号:
    2134215
  • 负责人:
  • 金额:
    $ 108.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Cells are the fundamental unit of life and all cells arise by cell division. To ensure that each daughter cell receives a complete set of the instructions for life, cells first duplicate their genetic material (DNA) and then move one copy to each daughter cell. Cells perform this task millions of times each day. The machine utilized for cell division is called the mitotic spindle. The mitotic spindle is required to organize and arrange the chromosomal DNA and segregate it into the daughter cells. This process is extremely important for the formation, development and maintenance of all living organisms. The self-organization of the mitotic spindle cannot be understood using biology alone. Rather, it requires the understanding of the underlying physical principles that govern the assembly and function of the mitotic spindle. The research conducted here will apply physical concepts behind self-organization of liquid crystals (the same liquid crystals found in computer and cell phone screens) to understand the ability of the mitotic spindle to organize itself in the absence of outside instructions. Understanding the fundamental rules of life that underlie cellular organization will result in new knowledge about how cells work as well as new insights to help us understand and ultimately fight diseases. The project will involve outreach to 8th and 9th grade girls in the nearby community, along with interdisciplinary training of undergraduates and graduate students.The scientific objective of this proposal is to understand how microtubule turnover and crosslinking control the organization and dynamics of the mitotic spindle. The mitotic spindle is a high-density organization of cross-linked microtubules which should be enough to stall the inherent microtubule dynamic instability as well as the mobility of the filaments within the structure. Yet, it has been shown that the spindle undergoes overall flux from the chromosomes toward the poles. This flux has been noted to be faster at the chromosomes than at the poles. A new model put forth by the investigators proposes that the flux is an essential process to fluidize the spindle near chromosomes where enhanced motion is needed to error correction. Flux decreases at the poles because of increased adhesion due to higher levels of crosslinkers put there by the process of flux. This exciting new model creates a new physical framework to begin exploring the underlying fundamental principles that enable the dynamic self-organization of the mitotic spindle. The proposed work will directly test the hypothesized model using quantitative light microscopy and genetic manipulations. These tests will reveal new information on the inner workings of the spindle. The proposal directly responds to several important aspects of modern biological research including integrating across scales, from single molecules to complex structures and whole cells. The active matter experiments directly address the synthesis of life-like systems using minimal purified components. From a physics perspective, the synthesis of life-like systems are essential to understanding the non-equilibrium processes of biology that couple to self-organize, sense, and respond to stimuli. This is a frontier area of physics and materials research, which will uncover new knowledge about fundamental cell biology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞是生命的基本单位,所有细胞都是通过细胞分裂产生的。为了确保每个子细胞接收到一套完整的生命指令,细胞首先复制它们的遗传物质(DNA),然后将一个拷贝转移到每个子细胞。 细胞每天执行这个任务数百万次。用于细胞分裂的机器称为有丝分裂纺锤体。有丝分裂纺锤体需要组织和排列染色体DNA并将其分离到子细胞中。这一过程对所有生物体的形成、发育和维持都极为重要。有丝分裂纺锤体的自我组织不能单独使用生物学来理解。相反,它需要了解的基本物理原理,管理有丝分裂纺锤体的组装和功能。在这里进行的研究将应用液晶自组织背后的物理概念(与计算机和手机屏幕中发现的液晶相同)来理解有丝分裂纺锤体在没有外部指令的情况下组织自己的能力。了解细胞组织的基本生命规则将导致关于细胞如何工作的新知识,以及帮助我们理解并最终对抗疾病的新见解。 该项目将涉及向附近社区的八年级和九年级女生进行外展,沿着对本科生和研究生进行跨学科培训。本提案的科学目标是了解微管周转和交联如何控制有丝分裂纺锤体的组织和动力学。有丝分裂纺锤体是交联微管的高密度组织,其应足以阻止固有的微管动力学不稳定性以及结构内细丝的流动性。然而,已经表明,纺锤体经历了从染色体到两极的整体通量。这种通量在染色体上比在两极上更快。研究人员提出的一个新模型提出,通量是使纺锤体靠近染色体的必要过程,在染色体附近需要增强运动来纠错。焊剂在两极处减少,因为焊剂过程中产生的较高水平的交联剂增加了粘附力。这个令人兴奋的新模型创建了一个新的物理框架,开始探索使有丝分裂纺锤体动态自组织的基本原则。拟议的工作将直接测试使用定量光学显微镜和遗传操作的假设模型。这些测试将揭示主轴内部工作的新信息。该提案直接回应了现代生物学研究的几个重要方面,包括从单分子到复杂结构和整个细胞的跨尺度整合。活性物质实验直接解决了使用最少的纯化成分合成类生命系统的问题。从物理学的角度来看,类生命系统的合成对于理解生物学的非平衡过程至关重要,这些过程与自组织,感知和对刺激的反应相结合。这是物理和材料研究的前沿领域,将揭示基础细胞生物学的新知识。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The multifunctional spindle midzone in vertebrate cells at a glance
脊椎动物细胞中的多功能纺锤体中区一目了然
  • DOI:
    10.1242/jcs.250001
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Wadsworth, Patricia
  • 通讯作者:
    Wadsworth, Patricia
Self-Assembly of Microtubule Tactoids
  • DOI:
    10.3791/63952
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Chauhan,Prashali;Sahu,Sumon;Ross,Jennifer L.
  • 通讯作者:
    Ross,Jennifer L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Ross其他文献

The development of key performance criteria for monitoring laboratory performance in gynaecological cytopathology
  • DOI:
    10.1016/s0031-3025(16)32864-1
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jennifer Ross;Vanessa Thomson
  • 通讯作者:
    Vanessa Thomson
Microtubule Motility in Crowded Conditions in vitro
  • DOI:
    10.1016/j.bpj.2010.12.2654
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Lynn Liu;Oana Ursu;Jennifer Ross
  • 通讯作者:
    Jennifer Ross
Effectiveness of an integrated platform-based intervention for promoting psychosocial safety climate and mental health in nursing staff: A pragmatic cluster randomised controlled trial
基于综合平台的干预措施对促进护理人员心理社会安全氛围和心理健康的有效性:一项实效性整群随机对照试验
  • DOI:
    10.1016/j.ijnurstu.2025.105076
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    7.100
  • 作者:
    Leif Boß;Jennifer Ross;Dorota Reis;Sarah Pischel;Tim Mallwitz;Hanna Brückner;Grit Tanner;Helge Nissen;Lina Kalon;Marlies Schümann;Thomas Lennefer;Monique Janneck;Jörg Felfe;Antje Ducki;Dirk Lehr
  • 通讯作者:
    Dirk Lehr
Improving laboratory economic and environmental performance by the implementation of an environmental management system
通过实施环境管理体系提高实验室经济和环境绩效
  • DOI:
    10.1007/s00769-019-01388-6
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Jennifer Ross;John Penesis;T. Badrick
  • 通讯作者:
    T. Badrick
Web-Based Apps in the fight against COVID-19
对抗 COVID-19 的基于 Web 的应用程序
  • DOI:
    10.21037/jmai-20-61
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. P. Sosa;M. M. Caceres;Jennifer Ross;D. Hathaway;Jayati Mehta;Krunal Pandav;R. Pakala;Maliha Butt;Zeryab Dogar;Marie;Nada El Mazboudi;M. K. Pormento;Madiha Zaidi;Harshitha Mergey Devender;Hanyou Loh;Radhika Garimella;Niran Brahmbhatt
  • 通讯作者:
    Niran Brahmbhatt

Jennifer Ross的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Ross', 18)}}的其他基金

Collaborative Research: Build and Broaden Faculty Learning Community
合作研究:建立和扩大教师学习社区
  • 批准号:
    2315835
  • 财政年份:
    2023
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Living biotic-abiotic materials with temporally programmable actuation
合作研究:DMREF:具有临时可编程驱动的生物-非生物活性材料
  • 批准号:
    2118403
  • 财政年份:
    2021
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Standard Grant
Collaborative Research: Enzyme-Powered, Programmable Active Matter
合作研究:酶驱动的可编程活性物质
  • 批准号:
    2004417
  • 财政年份:
    2020
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Continuing Grant
Build and Broaden: Collaborative Research: African American Family Relationship Research through Partnerships with HBCUs
建立和扩大:合作研究:通过与 HBCU 合作进行非裔美国人家庭关系研究
  • 批准号:
    2040026
  • 财政年份:
    2020
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Standard Grant
Spindle Flux and Mechanics
主轴磁通和力学
  • 批准号:
    1817926
  • 财政年份:
    2018
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Standard Grant
REU Site: Bio and Soft Matter Research Training (B-SMaRT)
REU 站点:生物和软物质研究培训 (B-SMaRT)
  • 批准号:
    1359191
  • 财政年份:
    2014
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Continuing Grant
Collaborative Research: Implementation and Evaluation of a Sustainable Computer-Based Tutoring System for Introductory Linear Circuit Analysis
合作研究:基于可持续计算机的线性电路分析入门辅导系统的实施和评估
  • 批准号:
    1323635
  • 财政年份:
    2013
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Standard Grant
INSPIRE Track 1: Condensed Phases and Transitions of Cellular Patterns
INSPIRE 轨道 1:细胞模式的凝聚相和转变
  • 批准号:
    1344203
  • 财政年份:
    2013
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Continuing Grant
Controlling the Dynamics of a Model Filamentous Biopolymer
控制丝状生物聚合物模型的动力学
  • 批准号:
    1207783
  • 财政年份:
    2012
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Standard Grant
Physical Regulation of Microtubule Biomechanics
微管生物力学的物理调节
  • 批准号:
    0928540
  • 财政年份:
    2009
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Standard Grant

相似国自然基金

高维Drift-flux形式的两相流模型的一些问题研究
  • 批准号:
    11671150
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
基于Flux-Free上界估计的非线性力学有限元分析验证方法研究
  • 批准号:
    11172209
  • 批准年份:
    2011
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342936
  • 财政年份:
    2024
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
  • 批准号:
    2342937
  • 财政年份:
    2024
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Continuing Grant
Bloom and bust: seasonal cycles of phytoplankton and carbon flux
繁荣与萧条:浮游植物和碳通量的季节性周期
  • 批准号:
    2910180
  • 财政年份:
    2024
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Studentship
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318941
  • 财政年份:
    2024
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Standard Grant
Development of a Physics-Data Driven Surface Flux Parameterization for Flow in Complex Terrain
开发物理数据驱动的复杂地形流动表面通量参数化
  • 批准号:
    2336002
  • 财政年份:
    2024
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Continuing Grant
In situ flux growth synthesis of layered double hydroxide/sodium titanate hybrid structure adsorbent for actual wastewater treatment
原位通量生长合成层状双氢氧化物/钛酸钠杂化结构吸附剂用于实际废水处理
  • 批准号:
    24K17541
  • 财政年份:
    2024
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
4Mag: Four-dimensional magnetic flux measurements (stage 2)
4Mag:四维磁通量测量(第 2 阶段)
  • 批准号:
    10061807
  • 财政年份:
    2023
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Collaborative R&D
Development of water splitting photoelectrochemical cell using liquid phase-flux controlled sputtering method
液相通量控制溅射法水分解光电化学电池的研制
  • 批准号:
    23H01907
  • 财政年份:
    2023
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: MRA: Particulates in canopy flowpaths: A missing mass flux at the macrosystem scale?
合作研究:MRA:冠层流动路径中的颗粒物:宏观系统尺度上缺失的质量通量?
  • 批准号:
    2320976
  • 财政年份:
    2023
  • 资助金额:
    $ 108.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了