FMRG: Manufacturing USA: Cyber: Privacy-Preserving Tiny Machine Learning Edge Analytics to Enable AI-Commons for Secure Manufacturing
FMRG:美国制造业:网络:保护隐私的小型机器学习边缘分析,以实现 AI 共享以实现安全制造
基本信息
- 批准号:2134667
- 负责人:
- 金额:$ 300万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Current manufacturing systems based on a global supply chain work well, producing high-volume products at low cost. However, they are fragile to perturbations (e.g., COVID-19) and even processes that are essential to success, such as new product development and manufacturing ramp-up and optimization, can be prohibitively lengthy and expensive. Artificial Intelligence (AI) has revolutionized many industries and can be an important tool to improve the productivity and agility of manufacturing, but progress has been slow in manufacturing. This Future Manufacturing Research Grant (FMRG) Manufacturing USA: CyberManufacturing project is a fundamental reimagination of distributed AI/ML techniques to transform the future of manufacturing by establishing an AI-Commons that bridges multiple sites and companies using secure, distributed machine learning (ML), incentivized information sharing, and continuous quality improvement and training. This addresses a critical shortcoming of the current approach to AI in manufacturing; the limitation of training data to in-company data. Since AI algorithms increase in power with more data, secure data sharing and aggregation has the potential to provide vastly better AI solutions to all manufacturers. The project will also research the edge computation hardware needed to execute the resulting algorithms on the factory floor. The team will work closely with Ivy Tech Community College and the Vertically Integrated Projects program, which helps students from Purdue, Harvard, and Tuskegee University work on industry-defined manufacturing AI projects. This project’s goal will be achieved by fulfilling the following four objectives: (1) Co-optimization of Tiny Machine Learning (TinyML) hardware and software for manufacturing; (2) Design of privacy and confidentiality policies for an AI-Commons that encourages and incentivizes knowledge sharing; (3) Demonstration of data aggregation and predictive technical cost modeling for some foundational manufacturing processes; and (4) Introduction of AI in manufacturing curricula and integration with workforce development. A key focus is on AI system deployment to obtain necessary data for optimization of ML algorithms for common manufacturing processes in pharmaceutical, food processing, job shop machining, and hybrid composite materials. The project team has developed a strong partnership with small and large manufacturers in the Wabash Heartland Innovation Network (WHIN) region in Indiana. TinyML devices will be deployed throughout this region, where the sharing of data and AI could improve operations significantly.This project is jointly funded by the Division of Civil. Mechanical and Manufacturing Innovation, the Division of Computer and Network Systems, the Division of Engineering Education and Centers and the Office of Multidisciplinary Activities of the Directorate for Social, Behavioral and Economic Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
目前基于全球供应链的制造系统运转良好,以低成本生产大量产品。然而,它们很容易受到干扰(例如,新冠肺炎)的影响,即使是对成功至关重要的过程,如新产品开发、制造升级和优化,也可能耗时长得令人望而却步,而且成本高昂。人工智能(AI)给许多行业带来了革命性的变化,可以成为提高制造业生产率和敏捷性的重要工具,但制造业的进展一直很缓慢。未来制造业研究资助(FMRG)美国制造业:网络制造项目是对分布式AI/ML技术的根本重新想象,旨在通过建立AI-Commons来改变制造业的未来,该AI-Commons使用安全的分布式机器学习(ML)连接多个站点和公司,激励信息共享,以及持续的质量改进和培训。这解决了目前制造业人工智能方法的一个严重缺陷:培训数据仅限于公司内部数据。由于AI算法的能力随着数据的增加而增加,因此安全的数据共享和聚合有可能为所有制造商提供更好的AI解决方案。该项目还将研究在工厂车间执行所产生的算法所需的边缘计算硬件。该团队将与常春藤理工社区学院和垂直整合项目项目密切合作,该项目帮助普渡大学、哈佛大学和塔斯基吉大学的学生在行业定义的制造业人工智能项目上工作。该项目的目标将通过实现以下四个目标来实现:(1)用于制造的微型机器学习(TinyML)硬件和软件的共同优化;(2)为鼓励和激励知识共享的AI-Commons设计隐私和保密政策;(3)为一些基本的制造过程演示数据聚合和预测性技术成本建模;以及(4)在制造课程中引入人工智能并与劳动力发展相结合。一个关键的重点是人工智能系统的部署,以获得必要的数据,以优化制药、食品加工、作业车间加工和混杂复合材料中常见制造过程的ML算法。该项目团队与印第安纳州沃巴什中心地带创新网络(WHIN)地区的大大小小的制造商建立了牢固的合作伙伴关系。TinyML设备将部署在整个地区,那里的数据共享和人工智能可以显著改善运营。该项目由土木工程司联合资助。机械和制造创新、计算机和网络系统分部、工程教育和中心分部以及社会、行为和经济科学局的多学科活动办公室。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active learning approaches to analysis of thin-film printed sensors for determining nitrate levels in soil
用于分析薄膜印刷传感器以确定土壤中硝酸盐含量的主动学习方法
- DOI:10.2352/ei.2023.35.15.color-194
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wang, Xihui;Shakouri, Ali;Ribeiro, Bruno;Chiu, George T.C.;Allebach, Jan P.
- 通讯作者:Allebach, Jan P.
Improvements to color image and machine learning based thin-film nitrate sensor performance prediction: New texture features, repeated cross-validation, and auto-tuning of hyperparameters
基于彩色图像和机器学习的薄膜硝酸盐传感器性能预测的改进:新的纹理特征、重复交叉验证和超参数自动调整
- DOI:10.2352/ei.2022.34.15.color-159
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wang, Xihui;Mi, Ye;Shakouri, Ali;Chiu, George T.C.;Allebach, Jan P.
- 通讯作者:Allebach, Jan P.
Building Manufacturing Deep Learning Models with Minimal and Imbalanced Training Data Using Domain Adaptation and Data Augmentation
- DOI:10.1109/icit58465.2023.10143099
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Adrian Li;Elisa Bertino;Rih-Teng Wu;Ting Wu
- 通讯作者:Adrian Li;Elisa Bertino;Rih-Teng Wu;Ting Wu
Thin-Film Nitrate Sensor Performance Prediction Based on Image Analysis and Credibility Data to Enable a Certify As Built Framework
基于图像分析和可信度数据的薄膜硝酸盐传感器性能预测,以实现内置认证框架
- DOI:10.1115/msec2022-85638
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wang, Xihui;Saha, Ajanta;Mi, Ye;Shakouri, Ali;Ashraful Alam, Muhammad;Chiu, George T.;Allebach, Jan P.
- 通讯作者:Allebach, Jan P.
Data science knowledge integration: Affordances of a computational cognitive apprenticeship on student conceptual understanding
数据科学知识整合:计算认知学徒期对学生概念理解的启示
- DOI:10.1002/cae.22580
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Sánchez‐Peña, Matilde;Vieira, Camilo;Magana, Alejandra J.
- 通讯作者:Magana, Alejandra J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Shakouri其他文献
Design, fabrication, and hypervelocity impact testing of screen-printed flexible micrometeoroid and orbital debris impact sensors for long-duration spacecraft health monitoring
用于长时间航天器健康监测的丝网印刷柔性微流星体和轨道碎片撞击传感器的设计、制造和超高速撞击测试
- DOI:
10.1016/j.ast.2023.108372 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:5.800
- 作者:
Douglas C. Hofmann;Punnathat Bordeenithikasem;Yuhang Zhu;Yufei Liu;Nathan J. Conrad;B. Alan Davis;Eric L. Christiansen;Ali Shakouri;Saeed Mohammadi - 通讯作者:
Saeed Mohammadi
Characteristic equations for different ARROW structures
- DOI:
10.1023/a:1007063026607 - 发表时间:
1999-12-01 - 期刊:
- 影响因子:4.000
- 作者:
Bin Liu;Ali Shakouri;John E. Bowers - 通讯作者:
John E. Bowers
Nanoscale devices for solid state refrigeration and power generation
- DOI:
10.1109/stherm.2004.1291293 - 发表时间:
2004-03 - 期刊:
- 影响因子:0
- 作者:
Ali Shakouri - 通讯作者:
Ali Shakouri
Mirizzi With Pre-Bouveret’s Syndrome
- DOI:
10.1016/j.cgh.2007.12.006 - 发表时间:
2008-03-01 - 期刊:
- 影响因子:
- 作者:
Ali Shakouri;Shou–Jiang Tang - 通讯作者:
Shou–Jiang Tang
Power Generator Modules of Segmented Bi2Te3 and ErAs:(InGaAs)1−x (InAlAs) x
- DOI:
10.1007/s11664-008-0435-2 - 发表时间:
2008-03-27 - 期刊:
- 影响因子:2.500
- 作者:
Gehong Zeng;Je-Hyeong Bahk;John E. Bowers;Hong Lu;Joshua M.O. Zide;Arthur C. Gossard;Rajeev Singh;Zhixi Bian;Ali Shakouri;Suzanne L. Singer;Woochul Kim;Arun Majumdar - 通讯作者:
Arun Majumdar
Ali Shakouri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali Shakouri', 18)}}的其他基金
Planning Grant: Engineering Research Center for Resilient AI Network (RAIN) for next-generation manufacturing
规划资助:下一代制造弹性人工智能网络(RAIN)工程研究中心
- 批准号:
2124295 - 财政年份:2021
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Collaborative Research: NSF/DOE Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles
合作研究:NSF/DOE 热电合作伙伴关系:基于嵌入纳米粒子的 Zintl 相材料的高性能热电废热回收系统
- 批准号:
1345118 - 财政年份:2013
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
Collaborative Research: Engaged Interdisciplinary Learning in Sustainability (EILS): Enhancing STEM Education through Social and Technological Literacy
合作研究:可持续发展跨学科学习 (EILS):通过社会和技术素养加强 STEM 教育
- 批准号:
1023054 - 财政年份:2010
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Collaborative Research: NSF/DOE Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles
合作研究:NSF/DOE 热电合作伙伴关系:基于嵌入纳米粒子的 Zintl 相材料的高性能热电废热回收系统
- 批准号:
1048801 - 财政年份:2010
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
Renewable Energy and Engaged Interdisciplinary Learning for Sustainability (REELS)
可再生能源和可持续发展跨学科学习 (REELS)
- 批准号:
0817589 - 财政年份:2008
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
International Workshop on Nanoscale Energy Conversion and Information Processing Devices
纳米级能量转换与信息处理装置国际研讨会
- 批准号:
0646225 - 财政年份:2006
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Virtual and Physical Laboratories for Active Learning of Electronic Materials
用于电子材料主动学习的虚拟和物理实验室
- 批准号:
0088881 - 财政年份:2001
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
CAREER: Opto- Thermo- Electronic Devices
职业:光电热电子器件
- 批准号:
9984537 - 财政年份:2000
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
相似海外基金
FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
- 批准号:
2328395 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
- 批准号:
2328260 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
- 批准号:
2239307 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Manufacturing of Next-Generation Perovskite Semiconductors at Scale
FMRG:网络:美国制造:大规模制造下一代钙钛矿半导体
- 批准号:
2328010 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
ERI: Manufacturing USA: Additive Manufacturing of Iron based Shape Memory Alloy
ERI:美国制造:铁基形状记忆合金的增材制造
- 批准号:
2301766 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
- 批准号:
2328160 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Cyber-Enabled, High-Throughput Manufacturing of Multi-Material, 3D Nanostructures
FMRG:网络:美国制造:网络支持的多材料、3D 纳米结构的高通量制造
- 批准号:
2229036 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
FMRG: Manufacturing USA: Cyber: Data-Driven Methods for Future Cyber Manufacturing as a Service
FMRG:美国制造:网络:未来网络制造即服务的数据驱动方法
- 批准号:
2229260 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
Manufacturing Talent Development Innovation Laboratory: A Workshop for Manufacturing USA Institute Workforce Development Stakeholders
制造业人才发展创新实验室:美国制造业研究所劳动力发展利益相关者研讨会
- 批准号:
2034255 - 财政年份:2020
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
Manufacturing USA: Precision Alignment of Roll-to-Roll Printing of Flexible Paper Electronics Through Modeling and Virtual Sensor-based Control
美国制造:通过建模和基于虚拟传感器的控制实现柔性纸电子产品卷对卷印刷的精确对准
- 批准号:
1907250 - 财政年份:2019
- 资助金额:
$ 300万 - 项目类别:
Standard Grant