FMRG: Cyber: Manufacturing USA: Manufacturing of Next-Generation Perovskite Semiconductors at Scale
FMRG:网络:美国制造:大规模制造下一代钙钛矿半导体
基本信息
- 批准号:2328010
- 负责人:
- 金额:$ 300万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
For the past century, semiconductor manufacturing has relied heavily on sequential deposition and removal of material layers to fabricate integrated devices. However, sequential layer-by-layer processing imposes restrictions on the processing parameters that can be used for the top layers in the device, which must maintain chemical and thermal compatibility with the underlying layers. This limits the ability to engineer precise interfaces in many applications, especially when integrating emerging functional materials with new processing constraints. To overcome these limitations, this Future Manufacturing Research Grant (FMRG) explores a novel lamination approach for halide perovskite semiconductors that enables the engineering of functionality and new device architectures. Potential applications of this technology are solar cells, LEDs, and other optoelectronic devices. By developing the cyberinfrastructure for distributed manufacturing, trained machine learning models are generated to optimize a specified objective function that is unique to each end-user, thereby supporting the ability of small-to-medium manufacturers (SMMs) to prototype their designs and scale-up their processes. This research is closely integrated with education and workforce development activities, where partnerships with local workforce development organizations and an industry advisory board (IAB) are formed to identify the education and training needs of the next generation of cyber manufacturing workers, while ensuring a diverse manufacturing workforce. This project supports the national priorities of semiconductor manufacturing and renewable energy.The research objective of this FMRG research is to understand, model, and control the process-structure-property relationships during halide perovskite (HP) semiconductor manufacturing using a novel lamination approach that enables new device architectures and material combinations that are currently inaccessible using traditional sequential deposition processing. In this approach, device half-stacks can be independently processed in parallel with relaxed process constraints, and subsequently integrated using a continuous lamination platform with controlled alignment. By integrating in-line metrology with physics-informed data-driven models, the project develops a fundamental understanding of the thermo-chemo-mechanical mechanisms that guide the HP lamination process, which enables closed-loop process control. Algorithms are developed that bridge high-throughput, low-fidelity in-line metrology data streams with low-throughput, high-fidelity ex situ characterization methods, which are prohibitive in an industrial manufacturing setting. Physics-informed process control is enabled through development of reduced-order models and process parameter optimization using federated learning approaches. The cyber manufacturing platform enables automated generation of a database of process-structure-property relationships under diverse (and non-idealized) manufacturing environments, which enables predictive modeling and process optimization through a shared cyberinfrastructure.This Future Manufacturing award was supported by the Divisions of Civil, Mechanical and Manufacturing Innovation (CMMI) and Engineering Education and Centers (EEC) and by the National Nanotechnology Initiative (NNI) Special Studies Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的一个世纪里,半导体制造严重依赖于连续沉积和去除材料层来制造集成器件。然而,连续的逐层加工对设备顶层的加工参数施加了限制,顶层必须保持与底层的化学和热兼容性。这限制了在许多应用中设计精确接口的能力,特别是在将新兴功能材料与新的加工约束相集成时。为了克服这些限制,未来制造研究基金(FMRG)探索了卤化物钙钛矿半导体的新型层压方法,使功能工程和新设备架构成为可能。这项技术的潜在应用是太阳能电池、led和其他光电器件。通过开发分布式制造的网络基础设施,生成训练有素的机器学习模型,以优化每个最终用户独有的指定目标函数,从而支持中小型制造商(smm)设计原型和扩大流程的能力。这项研究与教育和劳动力发展活动紧密结合,与当地劳动力发展组织和行业咨询委员会(IAB)建立了合作伙伴关系,以确定下一代网络制造工人的教育和培训需求,同时确保制造业劳动力的多样化。该项目支持半导体制造和可再生能源的国家重点发展。这项FMRG研究的研究目标是利用一种新的层压方法来理解、建模和控制卤化物钙钛矿(HP)半导体制造过程中的工艺-结构-性能关系,这种方法可以实现目前使用传统的顺序沉积工艺无法实现的新器件架构和材料组合。在这种方法中,器件半堆可以在宽松的工艺约束下独立并行加工,随后使用具有控制对准的连续层压平台进行集成。通过将在线计量与物理数据驱动模型相结合,该项目对指导HP层压工艺的热化学机械机制有了基本的了解,从而实现了闭环过程控制。开发了将高通量、低保真度的在线计量数据流与低通量、高保真度的非原位表征方法连接起来的算法,这在工业制造环境中是禁止的。通过使用联邦学习方法开发降阶模型和过程参数优化,可以实现基于物理的过程控制。网络制造平台能够在不同(和非理想化)制造环境下自动生成过程-结构-属性关系数据库,从而通过共享的网络基础设施实现预测建模和过程优化。该未来制造奖由民用、机械和制造创新部(CMMI)、工程教育和中心(EEC)以及国家纳米技术倡议(NNI)特别研究计划支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Dasgupta其他文献
Neil Dasgupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Dasgupta', 18)}}的其他基金
CAREER: Rational Design and Manufacturing of Nanostructured Surfaces and Interfaces in Lightweight Materials
职业:轻质材料纳米结构表面和界面的合理设计和制造
- 批准号:
1751590 - 财政年份:2018
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
SNM: Additive Nanomanufacturing of Integrated Systems for Customized Personal Health Monitoring
SNM:用于定制个人健康监测的集成系统的增材纳米制造
- 批准号:
1727918 - 财政年份:2017
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
相似国自然基金
Cyber体系脆弱性仿真分析方法研究
- 批准号:61403400
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于复杂网络理论的Cyber体系效能仿真分析方法研究
- 批准号:61374179
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
- 批准号:61300132
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Cyber攻击对国家关键基础设施级联失效影响建模仿真研究
- 批准号:61174035
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
基于Cyber空间的体系脆弱性仿真分析方法研究
- 批准号:61174156
- 批准年份:2011
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
- 批准号:
2328395 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
- 批准号:
2328260 - 财政年份:2024
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Exploiting Spatio-Temporal Interdependency Between Electrochemical Manufacturing and Power Grid to Optimize Flexibility and Sustainability
FMRG:网络:美国制造:利用电化学制造和电网之间的时空相互依赖性来优化灵活性和可持续性
- 批准号:
2328160 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Cyber: Cyber-Coordinated Analytical Framework for Multi-stage Distributed Future Manufacturing Systems
FMRG:网络:多阶段分布式未来制造系统的网络协调分析框架
- 批准号:
2412020 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Cyber: Scalable Precision Manufacturing of Programmable Polymer Nanoparticles Using Low-temperature Initiated Chemical Vapor Deposition Guided by Artificial Intelligence
FMRG:网络:利用人工智能引导的低温引发化学气相沉积进行可编程聚合物纳米粒子的可扩展精密制造
- 批准号:
2229092 - 财政年份:2023
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Cyber: Manufacturing USA: Cyber-Enabled, High-Throughput Manufacturing of Multi-Material, 3D Nanostructures
FMRG:网络:美国制造:网络支持的多材料、3D 纳米结构的高通量制造
- 批准号:
2229036 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
FMRG: Eco: Cyber Enabled Transformation to Circular Supply Chains for Sustainable Pharmaceutical Manufacturing Networks
FMRG:Eco:通过网络实现循环供应链转型,实现可持续药品制造网络
- 批准号:
2229250 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Manufacturing USA: Cyber: Data-Driven Methods for Future Cyber Manufacturing as a Service
FMRG:美国制造:网络:未来网络制造即服务的数据驱动方法
- 批准号:
2229260 - 财政年份:2022
- 资助金额:
$ 300万 - 项目类别:
Continuing Grant
FMRG: Cyber: Cyber-Coordinated Analytical Framework for Multi-stage Distributed Future Manufacturing Systems
FMRG:网络:多阶段分布式未来制造系统的网络协调分析框架
- 批准号:
2134409 - 财政年份:2021
- 资助金额:
$ 300万 - 项目类别:
Standard Grant
FMRG: Manufacturing USA: Cyber: Privacy-Preserving Tiny Machine Learning Edge Analytics to Enable AI-Commons for Secure Manufacturing
FMRG:美国制造业:网络:保护隐私的小型机器学习边缘分析,以实现 AI 共享以实现安全制造
- 批准号:
2134667 - 财政年份:2021
- 资助金额:
$ 300万 - 项目类别:
Standard Grant