FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing

FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习

基本信息

  • 批准号:
    2134689
  • 负责人:
  • 金额:
    $ 49.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Distributed additive manufacturing has promising potential to connect and coordinate individual manufacturers for efficient, on-demand production. It can leverage the freeform fabrication of numerous additive manufacturers to form a flexible and robust supply chain and achieve reconfigurable mass customization in the future. However, product quality, consistency and privacy concerns among those distributed manufacturers pose a grand challenge to fully unleashing the potential of distributed additive manufacturing. This Future Manufacturing Seed Grant (FMSG) CyberManufacturing project will support fundamental research to provide needed knowledge for developing a unified algorithmic and training framework. The new framework, named FEDMDL, will lay a solid foundation to enable consistent and reliable production in a privacy-preserving, insight-sharing manufacturing network. This will further promote the adoption of additively manufactured parts in various industries, such as aerospace, automobile, healthcare, and will boost the participation of small-and-medium-sized manufacturers in the national supply chain. Therefore, results from this research will benefit the competitive advantages of US manufacturing and economy. This research provides manufacturing companies with the synergy of novel machine learning and federated computing techniques. The multi-disciplinary approach will help broaden the participation of underrepresented groups in research and positively impact engineering education. The unified algorithmic and training framework, FEDMDL, will chart a new theoretical path to enabling reliable production, consistent quality, and privacy-preserving data sharing in distributed additive manufacturing. FEDMDL will synthesize the fundamental physics of additive manufacturing processes into deep learning algorithms and train the new models on a federated learning cyberinfrastructure. In this seed grant, FEDMDL will be prototyped with fatigue performance assessment of additively manufactured metals in a distributed manufacturing network. The research team will: (1) conduct fatigue testing and defect characterization to understand material-defect-geometry-loading-fatigue relationships; (2) develop fracture-mechanics-centric deep learning models to approximate multi-physics multiscale processes and predict the fatigue performance of complex geometries under multiaxial loading; (3) design a cross-silo, additive-manufacturing-aware federated learning cyberinfrastructure to train the deep learning models with collective insights from the sparse, siloed datasets across manufacturers; and (4) evaluate the framework by deploying it in a real-world distributed additive manufacturing network. This work will result in an experimentally validated, generalizable algorithmic and training framework to catalyze research and applications in quality modeling, qualification, and control for future distributed additive manufacturing with collective intelligence.This project is jointly funded by the Division of Civil. Mechanical and Manufacturing Innovation, the Established Program to Stimulate Competitive Research (EPSCoR), and the Division of Electrical, Communications, and Cyber Systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分布式增材制造在连接和协调单个制造商以实现高效的按需生产方面具有很大的潜力。它可以利用众多增材制造商的自由制造,形成灵活而稳健的供应链,并在未来实现可重构的大规模定制。然而,在这些分布式制造商中,产品质量、一致性和隐私问题对充分释放分布式增材制造的潜力构成了巨大挑战。该未来制造种子基金(FMSG)网络制造项目将支持基础研究,为开发统一的算法和培训框架提供所需的知识。名为FEDMDL的新框架将为在隐私保护、见解共享的制造网络中实现一致和可靠的生产奠定坚实的基础。这将进一步促进增材制造零部件在航空航天、汽车、医疗等各行业的应用,并将促进中小制造商参与国家供应链。因此,本研究的结果将有利于美国制造业和经济的竞争优势。这项研究为制造公司提供了新型机器学习和联邦计算技术的协同作用。多学科方法将有助于扩大代表性不足的群体在研究中的参与,并对工程教育产生积极影响。统一的算法和培训框架FEDMDL将为分布式增材制造中实现可靠的生产、一致的质量和保护隐私的数据共享开辟一条新的理论路径。FEDMDL将把增材制造过程的基本物理原理综合到深度学习算法中,并在联邦学习网络基础设施上训练新模型。在这笔种子基金中,FEDMDL将在分布式制造网络中进行增材制造金属的疲劳性能评估原型。研究团队将:(1)进行疲劳测试和缺陷表征,了解材料-缺陷-几何-载荷-疲劳关系;(2)建立以断裂力学为中心的深度学习模型,以近似多物理场多尺度过程,预测复杂几何形状在多轴载荷下的疲劳性能;(3)设计一个跨竖井、感知增材制造的联邦学习网络基础设施,利用来自各制造商稀疏、竖井数据集的集体见解来训练深度学习模型;(4)通过在真实世界的分布式增材制造网络中部署该框架来评估该框架。这项工作将产生一个经过实验验证的、可推广的算法和培训框架,以催化在质量建模、鉴定和控制方面的研究和应用,为未来的分布式增材制造提供集体智能。本项目由土木工程部联合资助。机械和制造创新,刺激竞争研究的既定计划(EPSCoR),以及电气,通信和网络系统部门。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SFS: Smart OS Scheduling for Serverless Functions
Defect Criticality Analysis on Fatigue Life of L-PBF 17-4 PH Stainless Steel via Machine Learning
  • DOI:
    10.1016/j.ijfatigue.2022.107018
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Anyi Li;Shaharyar Baig;Jia Liu;Shuai Shao;N. Shamsaei
  • 通讯作者:
    Anyi Li;Shaharyar Baig;Jia Liu;Shuai Shao;N. Shamsaei
FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers
Defects Classification via Hierarchical Graph Convolutional Network in L-PBF Additive Manufacturing
L-PBF 增材制造中通过分层图卷积网络进行缺陷分类
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Liu其他文献

span style=font-family:quot;Times New Romanquot;,quot;serifquot;;font-size:12pt;Polymer-derived yttrium silicate coatings on 2D C/SiC composites/span
二维 C/SiC 复合材料上聚合物衍生的硅酸钇涂层
[Clinical study on combination of acupuncture, cupping and medicine for treatment of fibromyalgia syndrome].
针、拔罐、药物联合治疗纤维肌痛综合征的临床研究[J].
kNN Research based on Multi-Source Query Points on Road Networks
基于路网多源查询点的kNN研究
Electrochemical and Plasmonic Photochemical Oxidation Processes of para-Aminothiophenol on a Nanostructured Gold Electrode
纳米结构金电极上对氨基苯硫酚的电化学和等离子体光化学氧化过程
  • DOI:
    10.1021/acs.jpcc.1c05928
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui-Yuan Peng;De-Yin Wu;Yuan-Hui Xiao;Huan-Huan Yu;Jia-Zheng Wang;Jian-De Lin;Rajkumar Devasenathipathy;Jia Liu;Pei-Hang Zou;Meng Zhang;Jian-Zhang Zhou;Zhong-Qun Tian
  • 通讯作者:
    Zhong-Qun Tian
Indirect Effects of Fluid Intelligence on Creative Aptitude Through Openness to Experience
流体智力通过开放体验对创造性能力的间接影响
  • DOI:
    10.1007/s12144-017-9633-5
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiqin Liu;Ling Liu;Zhencai Chen;Yiying Song;Jia Liu
  • 通讯作者:
    Jia Liu

Jia Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Liu', 18)}}的其他基金

RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
  • 批准号:
    2338987
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
  • 批准号:
    2239307
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
  • 批准号:
    ES/W004860/1
  • 财政年份:
    2021
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Fellowship
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
  • 批准号:
    2140277
  • 财政年份:
    2021
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
  • 批准号:
    2038603
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    2110259
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Continuing Grant
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
  • 批准号:
    2102233
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    1943226
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Continuing Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
  • 批准号:
    2110252
  • 财政年份:
    2020
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant

相似国自然基金

Cyber体系脆弱性仿真分析方法研究
  • 批准号:
    61403400
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于复杂网络理论的Cyber体系效能仿真分析方法研究
  • 批准号:
    61374179
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
面向智能电网基础设施Cyber-Physical安全的自治愈基础理论研究
  • 批准号:
    61300132
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Cyber攻击对国家关键基础设施级联失效影响建模仿真研究
  • 批准号:
    61174035
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
基于Cyber空间的体系脆弱性仿真分析方法研究
  • 批准号:
    61174156
  • 批准年份:
    2011
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

Harnessing the power of ordinary people to prevent cyber abuse
利用普通人的力量来防止网络滥用
  • 批准号:
    DE240100080
  • 财政年份:
    2024
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Discovery Early Career Researcher Award
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
Cyber​​Corps 服务奖学金:培养具有研究意识的网络领导者
  • 批准号:
    2336409
  • 财政年份:
    2024
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Continuing Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Continuing Grant
Cybersecurity Workforce: Bridging the Gap in Appalachian Ohio (Cyber-Workforce)
网络安全劳动力:缩小俄亥俄州阿巴拉契亚地区的差距(网络劳动力)
  • 批准号:
    2350520
  • 财政年份:
    2024
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
CAREER: Psychology-aware Human-in-the-Loop Cyber-Physical-System (HCPS): Methodologies, Algorithms, and Deployment
职业:具有心理学意识的人在环网络物理系统 (HCPS):方法、算法和部署
  • 批准号:
    2339266
  • 财政年份:
    2024
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414606
  • 财政年份:
    2024
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
  • 批准号:
    2347294
  • 财政年份:
    2024
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
SBIR Phase I: A Cyber Assured Space Internet Device
SBIR 第一阶段:网络安全空间互联网设备
  • 批准号:
    2327618
  • 财政年份:
    2024
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 49.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了