EAGER: Weakly Supervised Graph Neural Networks
EAGER:弱监督图神经网络
基本信息
- 批准号:2137468
- 负责人:
- 金额:$ 14.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph Neural Networks have proven to be a powerful tool for harnessing graph data, which is widely used for representing rich relational information in multiple areas. However, the performance of graph neural networks largely depends on the amount of labeled data, and thus can be significantly affected by the label scarcity caused by the expensive and time-consuming annotation process, which is common among many high-impact applications, such as fraud detection, agriculture, cancer diagnosis. This project focuses on building high-performing graph neural networks in the presence of label scarcity. In particular, the developed techniques advance state-of-the-art by systematically leveraging weak supervision in the form of relevant source graphs and access to a labeling oracle with a limited budget. This project generates a suite of new models, algorithms and theories for constructing high-performing graph neural networks with weak supervision, and for understanding the benefits of weak supervision from a theoretical perspective. It advances state-of-the-practice for graph neural networks by significantly reducing the need for large amount of labeled data. This project involves students at various levels, especially those from under-represented groups. The research outcomes from this project will be disseminated at relevant conferences and journals in computer science.This project consists of two complementary research thrusts, focusing on the pre-training stage and the fine-tuning stage of the model construction process for graph neural networks respectively. For the pre-training stage, given the rich information from relevant source graphs, this project develops techniques to leverage such information via cross-graph domain adaptation, in order to obtain effective representation of the target graph at various granularities; for the fine-tuning stage, given a limited budget for querying an oracle, this project develops techniques to select the most informative nodes/edges/subgraphs based on the training dynamics of graph neural networks, such that this additional label information can maximally improve the model performance. Furthermore, this project establishes new theoretical results regarding the benefits of weak supervision, such as the impact of source graphs on the model generalization performance and the reduction of the sample complexity due to active learning with graph neural networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图神经网络已被证明是利用图数据的强大工具,图数据被广泛用于表示多个领域中丰富的关系信息。然而,图神经网络的性能在很大程度上取决于标记数据的数量,因此可能会受到昂贵且耗时的注释过程导致的标签稀缺性的显著影响,这在许多高影响力的应用中很常见,例如欺诈检测,农业,癌症诊断。该项目的重点是在标签稀缺的情况下构建高性能的图神经网络。特别是,所开发的技术通过系统地利用相关源图形式的弱监督和以有限预算访问标记Oracle来推进最先进的技术。该项目产生了一套新的模型,算法和理论,用于构建具有弱监督的高性能图神经网络,并从理论角度理解弱监督的好处。它通过显着减少对大量标记数据的需求来推进图神经网络的实践状态。该项目涉及各级学生,特别是代表性不足群体的学生。本项目的研究成果将在计算机科学的相关会议和期刊上发布。本项目包括两个互补的研究方向,分别侧重于图神经网络模型构建过程的预训练阶段和微调阶段。对于预训练阶段,考虑到来自相关源图的丰富信息,该项目开发了通过跨图域适应来利用这些信息的技术,以便在各种粒度上获得目标图的有效表示;对于微调阶段,给定用于查询Oracle的有限预算,该项目开发了基于图神经网络的训练动态来选择信息量最大的节点/边/子图的技术,使得这些额外的标签信息可以最大限度地提高模型性能。此外,该项目还建立了关于弱监督的好处的新理论成果,例如源图对模型泛化性能的影响,以及通过图神经网络的主动学习降低样本复杂性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distribution-Informed Neural Networks for Domain Adaptation Regression
用于域适应回归的分布通知神经网络
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wu, Jun;He, Jingrui;Wang, Sheng;Guan, Kaiyu;Ainsworth, Elizabeth A.
- 通讯作者:Ainsworth, Elizabeth A.
Contrastive Learning with Complex Heterogeneity
- DOI:10.1145/3534678.3539311
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Lecheng Zheng;Jinjun Xiong;Yada Zhu;Jingrui He
- 通讯作者:Lecheng Zheng;Jinjun Xiong;Yada Zhu;Jingrui He
Optimizing the Collaboration Structure in Cross-Silo Federated Learning
- DOI:10.48550/arxiv.2306.06508
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Wenxuan Bao;Haohan Wang;Jun Wu;Jingrui He
- 通讯作者:Wenxuan Bao;Haohan Wang;Jun Wu;Jingrui He
Robust Basket Recommendation via Noise-tolerated Graph Contrastive Learning
- DOI:10.1145/3583780.3615039
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Xinrui He;Tianxin Wei;Jingrui He
- 通讯作者:Xinrui He;Tianxin Wei;Jingrui He
Comprehensive Fair Meta-learned Recommender System
- DOI:10.1145/3534678.3539269
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Tianxin Wei;Jingrui He
- 通讯作者:Tianxin Wei;Jingrui He
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingrui He其他文献
Rare Category Detection
- DOI:
10.1007/978-3-642-22813-1_3 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jingrui He - 通讯作者:
Jingrui He
Multiple random walk and its application in content-based image retrieval
多重随机游走及其在基于内容的图像检索中的应用
- DOI:
10.1145/1101826.1101852 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Jingrui He;Hanghang Tong;Mingjing Li;Wei;Changshui Zhang - 通讯作者:
Changshui Zhang
Acicular ferrite nucleation mechanism in laser-MAG hybrid welds of X100 pipeline steel
- DOI:
https://doi.org/10.1016/j.matlet.2021.130603 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Xiaonan Qi;Xiaonan Wang;Hongshuang Di;Xinjunshen;Pengcheng Huan;Jingrui He;Long Chen - 通讯作者:
Long Chen
W-Boost and its application to Web image classification
W-Boost及其在Web图像分类中的应用
- DOI:
10.1109/icpr.2004.1334029 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Jingrui He;Mingjing Li;HongJiang Zhang;Changshui Zhang - 通讯作者:
Changshui Zhang
Learning from Multi-Modality Multi-Resolution Data: an Optimization Approach
从多模态多分辨率数据中学习:一种优化方法
- DOI:
10.1137/1.9781611974973.80 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yada Zhu;Jianbo Li;Jingrui He - 通讯作者:
Jingrui He
Jingrui He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingrui He', 18)}}的其他基金
III: Small: RareXplain: A Computational Framework for Explainable Rare Category Analysis
III:小:RareXplain:可解释稀有类别分析的计算框架
- 批准号:
2117902 - 财政年份:2021
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
III: Small: Predictive Analysis of Diabetes Dedicated Social Networks
III:小:糖尿病专用社交网络的预测分析
- 批准号:
2002540 - 财政年份:2019
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
CAREER: III: Modeling the Heterogeneity of Heterogeneity: Algorithms, Theories and Applications
职业:III:对异质性的异质性进行建模:算法、理论和应用
- 批准号:
1947203 - 财政年份:2019
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
III: Small: Predictive Analysis of Diabetes Dedicated Social Networks
III:小:糖尿病专用社交网络的预测分析
- 批准号:
1813464 - 财政年份:2018
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
CAREER: III: Modeling the Heterogeneity of Heterogeneity: Algorithms, Theories and Applications
职业:III:对异质性的异质性进行建模:算法、理论和应用
- 批准号:
1552654 - 财政年份:2016
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
Support for U.S.-Based Students to Attend the 2016 IEEE International Conference on Data Mining (ICDM 2016)
支持美国学生参加 2016 年 IEEE 国际数据挖掘会议 (ICDM 2016)
- 批准号:
1641030 - 财政年份:2016
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
相似海外基金
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of deepometry for the supervised and weakly supervised learning of imaging data
用于成像数据监督和弱监督学习的深度测量的发展
- 批准号:
2748735 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Studentship
Foundations of Unsupervised and Weakly Supervised Learning
无监督和弱监督学习的基础
- 批准号:
RGPIN-2019-06018 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Discovery Grants Program - Individual
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
- 批准号:
DGDND-2022-05397 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
- 批准号:
2228990 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: RFI Detection Across Six Orders of Magnitude in Intensity: A Unifying Framework with Weakly Supervised Machine Learning
合作研究:SWIFT-SAT:强度六个数量级的 RFI 检测:弱监督机器学习的统一框架
- 批准号:
2228989 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
3D land cover mapping from satellite imagery by weakly supervised learning
通过弱监督学习根据卫星图像绘制 3D 土地覆盖图
- 批准号:
22H03609 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deep Weakly-Supervised Neural Networks for Cross-Domain Video Recognition and Localization
用于跨域视频识别和定位的深度弱监督神经网络
- 批准号:
RGPIN-2022-05397 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient methods for the semi-supervised and weakly-supervised analysis of medical images
医学图像半监督和弱监督分析的有效方法
- 批准号:
RGPIN-2018-05715 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Discovery Grants Program - Individual
Weakly-supervised semantic segmentation to study resistance to antibiotics
用于研究抗生素耐药性的弱监督语义分割
- 批准号:
562806-2021 - 财政年份:2021
- 资助金额:
$ 14.99万 - 项目类别:
University Undergraduate Student Research Awards